The development of earth-abundant-metal-based electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) is crucial for the clean and renewable energy application. Herein, we report a molten-salt method to synthesize Co-doped CaMn3O6 (CMO) nanowires (NWs) as effective electrocatalyst for HER. The as-obtained CaMn3−xCoxO6 (CMCO) exhibits a small onset overpotential of 70 mV, a required overpotential of 140 mV at a current density of 10 mA·cm−2, a Tafel slope of 39 mV·dec−1 in 0.1 M HClO4, and a satisfying long-term stability. Experimental characterizations combined with density functional theory (DFT) calculations demonstrate that the obtained HER performance can be attributed to the Co-doping which altered CMO’s surface electronic structures and properties. Considering the simplicity of synthesis route and the abundance of the pertinent elements, the synthesized CMCO shows a promising prospect as a candidate for the development of earth-abundant, metal-based, and cost-effective electrocatalyst with superior HER activity. Our results also establish a strategy of rational design and construction of novel electrocatalyst toward HER by tailoring band structures of transition metal oxides (TMOs).
Publications
Article type
Year
Research Article
Issue
Nano Research 2022, 15(4): 2870-2876
Published: 20 October 2021
Downloads:35