AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Curved carbon photo-oxygenation catalysts for the suppression and nanoscopic imaging of β-amyloid peptides fibrillation

Yuanyuan Ma1,2,§Zhongju Ye1,§Chen Zhang3,§Yanjun Zhao4( )Hai-bin Luo3( )Lehui Xiao2( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, China

§ Yuanyuan Ma, Zhongju Ye, and Chen Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Herein, we designed a new molecule by conjugating corannulene (Cor) with rhodamine B isothiocyanate (Rhb), namely Cor-Rhb, for the nanoscopic imaging and modulating Aβ peptide fibrillation.

Abstract

The progression of Alzheimer’s disease (AD) is characterized with the deposition and aggregation of β-amyloid (Aβ). Visualizing Aβ aggregates at high spatial resolution is beneficial for AD diagnosis and treatment. Herein, we designed a new molecule by conjugating corannulene (Cor) with rhodamine B isothiocyanate (Rhb), namely Cor-Rhb, for the nanoscopic imaging and modulating Aβ peptide fibrillation. The low duty cycle, high photon output and sufficient switching cycles enable Cor-Rhb suitable for localization-based nanoscopic fluorescence imaging. We find that Cor-Rhb can inhibit Aβ peptides fibrillization and interact directly with mature fibrils, triggering their disaggregation under light illumination. Noticeably reduced Aβ-mediated cytotoxicity after the addition of Cor-Rhb is also confirmed. These explorations suggest that Cor-Rhb displays great potential as a multifunctional therapeutic agent against amyloid-related diseases, and may largely facilitate a variety of super-resolution based biological applications.

Electronic Supplementary Material

Download File(s)
12274_2021_3927_MOESM1_ESM.pdf (172.8 KB)

References

1

Habchi, J.; Arosio, P.; Perni, M.; Costa, A. R.; Yagi-Utsumi, M.; Joshi, P.; Chia, S.; Cohen, S. I. A.; Müller, M. B. D.; Linse, S. et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with alzheimer’s disease. Sci. Adv. 2016, 2, e1501244.

2

Suzuki, T.; Hori, Y.; Sawazaki, T.; Shimizu, Y.; Nemoto, Y.; Taniguchi, A.; Ozawa, S.; Sohma, Y.; Kanai, M.; Tomita, T. Photo-oxygenation inhibits tau amyloid formation. Chem. Commun. 2019, 55, 6165–6168.

3

Scheidt, T.; Łapińska, U.; Kumita, J. R.; Whiten, D. R.; Klenerman, D.; Wilson, M. R.; Cohen, S. I. A.; Linse, S.; Vendruscolo, M.; Dobson, C. M. et al. Secondary nucleation and elongation occur at different sites on alzheimer’s amyloid-β aggregates. Sci. Adv. 2019, 5, eaau3112.

4

Li, M.; Xu, C.; Ren, J. S.; Wang, E. B.; Qu, X. G. Photodegradation of β-sheet amyloid fibrils associated with alzheimer's disease by using polyoxometalates as photocatalysts. Chem. Commun. 2013, 49, 11394–11396.

5

Lee, B. I.; Suh, Y. S.; Chung, Y. J.; Yu, K.; Park, C. B. Shedding light on alzheimer’s β-amyloidosis: Photosensitized methylene blue inhibits self-assembly of β-amyloid peptides and disintegrates their aggregates. Sci. Rep. 2017, 7, 7523.

6

Song, Y.; Moore, E. G.; Guo, Y. S.; Moore, J. S. Polymer-peptide conjugates disassemble amyloid β fibrils in a molecular-weight dependent manner. J. Am. Chem. Soc. 2017, 139, 4298–4301.

7

Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M.; Choi, S.; Kwon, S. H. et al. Graphene quantum dots prevent α-synucleinopathy in parkinson’s disease. Nat. Nanotechnol. 2018, 13, 812–818.

8

Li, Y. H.; Xu, D.; Ho, S. L.; Li, H. W.; Yang, R. H.; Wong, M. S. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation. Biomaterials 2016, 94, 84–92.

9

Yang, W. G.; Wong, Y.; Ng, O. T. W.; Bai, L. P.; Kwong, D. W. J.; Ke, Y.; Jiang, Z. H.; Li, H. W.; Yung, K. K. L.; Wong, M. S. Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angew. Chem., Int. Ed. 2012, 51, 1804–1810.

10

Han, Q. S.; Cai, S. F.; Yang, L.; Wang, X. H.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against alzheimer’s disease. ACS Appl. Mater. Interfaces 2017, 9, 21116–21123.

11

Bondia, P.; Torra, J.; Tone, C. M.; Sawazaki, T.; del Valle, A.; Sot, B.; Nonell, S.; Kanai, M.; Sohma, Y.; Flors, C. Nanoscale view of amyloid photodynamic damage. J. Am. Chem. Soc. 2020, 142, 922–930.

12

Son, G.; Lee, B. I.; Chung, Y. J.; Park, C. B. Light-triggered dissociation of self-assembled β-amyloid aggregates into small, nontoxic fragments by ruthenium (II) complex. Acta Biomater. 2018, 67, 147–155.

13

Chung, Y. J.; Lee, B. I.; Ko, J. W.; Park, C. B. Photoactive g-C3N4 nanosheets for light-induced suppression of alzheimer's β-amyloid aggregation and toxicity. Adv. Healthc. Mater. 2016, 5, 1560–1565.

14

Lee, B. I.; Lee, S.; Suh, Y. S.; Lee, J. S.; Kim, A. K.; Kwon, O. Y.; Yu, K.; Park, C. B. Photoexcited porphyrins as a strong suppressor of β-amyloid aggregation and synaptic toxicity. Angew. Chem., Int. Ed. 2015, 54, 11472–11476.

15

Lee, J. S.; Lee, B. I.; Park, C. B. Photo-induced inhibition of alzheimer's β-amyloid aggregation in vitro by rose bengal. Biomaterials 2015, 38, 43–49.

16

Ni, J. Z.; Taniguchi, A.; Ozawa, S.; Hori, Y.; Kuninobu, Y.; Saito, T.; Saido, T. C.; Tomita, T.; Sohma, Y.; Kanai, M. Near-infrared photoactivatable oxygenation catalysts of amyloid peptide. Chem 2018, 4, 807–820.

17

Ishida, Y.; Fujii, T.; Oka, K.; Takahashi, D.; Toshima, K. Inhibition of amyloid β aggregation and cytotoxicity by photodegradation using a designed fullerene derivative. Chem. —Asian J. 2011, 6, 2312–2315.

18

Bieschke, J.; Herbst, M.; Wiglenda, T.; Friedrich, R. P.; Boeddrich, A.; Schiele, F.; Kleckers, D.; Lopez del Amo, J. M.; Grüning, B. A.; Wang, Q. W. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol. 2012, 8, 93–101.

19

Kaminski Schierle, G. S.; van de Linde, S.; Erdelyi, M.; Esbjörner, E. K.; Klein, T.; Rees, E.; Bertoncini, C. W.; Dobson, C. M.; Sauer, M.; Kaminski, C. F. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 2011, 133, 12902–12905.

20

Cox, H.; Georgiades, P.; Xu, H.; Waigh, T. A.; Lu, J. R. Self-assembly of mesoscopic peptide surfactant fibrils investigated by STORM super-resolution fluorescence microscopy. Biomacromolecules 2017, 18, 3481–3491.

21

Beun, L. H.; Albertazzi, L.; van der Zwaag, D.; de Vries, R.; Cohen Stuart, M. A. Unidirectional living growth of self-assembled protein nanofibrils revealed by super-resolution microscopy. ACS Nano 2016, 10, 4973–4980.

22

Wu, L. L.; Huang, J. G.; Pu, K. Y.; James, T. D. Dual-locked spectroscopic probes for sensing and therapy. Nat. Rev. Chem. 2021, 5, 406–421.

23

Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.

24
Cheng, P. H.; Pu, K. Y. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 2021, DOI: 10.1038/s41578-021-00328-6.https://doi.org/10.1038/s41578-021-00328-6
25

Pinotsi, D.; Buell, A. K.; Galvagnion, C.; Dobson, C. M.; Kaminski Schierle, G. S.; Kaminski, C. F. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 2014, 14, 339–345.

26

Liang, Y.; Lynn, D. G.; Berland, K. M. Direct observation of nucleation and growth in amyloid self-assembly. J. Am. Chem. Soc. 2010, 132, 6306–6308.

27

Ries, J.; Udayar, V.; Soragni, A.; Hornemann, S.; Nilsson, K. P. R.; Riek, R.; Hock, C.; Ewers, H.; Aguzzi, A. A.; Rajendran, L. Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem. Neurosci. 2013, 4, 1057–1061.

28

Ye, Z. J.; Geng, X.; Wei, L.; Li, Z. H.; Lin, S.; Xiao, L. H. Length-dependent distinct cytotoxic effect of amyloid fibrils beyond optical diffraction limit revealed by nanoscopic imaging. ACS Nano 2021, 15, 934–943.

29

He, H.; Liu, X.; Li, S.; Wang, X. J.; Wang, Q.; Li, J. Q.; Wang, J. Y.; Ren, H.; Ge, B. S.; Wang, S. J. et al. High-density super-resolution localization imaging with blinking carbon dots. Anal. Chem. 2017, 89, 11831–11838.

30

Burnette, D. T.; Sengupta, P.; Dai, Y. H.; Lippincott-Schwartz, J.; Kachar, B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 2011, 108, 21081–21086.

31

Macdonald, P. J.; Gayda, S.; Haack, R. A.; Ruan, Q. Q.; Himmelsbach, R. J.; Tetin, S. Y. Rhodamine-derived fluorescent dye with inherent blinking behavior for super-resolution imaging. Anal. Chem. 2018, 90, 9165–9173.

32

Li, H. L.; Vaughan, J. C. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 2018, 118, 9412–9454.

33

Nestoros, E.; Stuparu, M. C. Corannulene: A molecular bowl of carbon with multifaceted properties and diverse applications. Chem. Commun. 2018, 54, 6503–6519.

34

Guo, X. L.; Lu, D.; Zhang, D.; Deng, J.; Zhang, X.; Wang, Z.; Xiao, L. H.; Zhao, Y. J. Curved corannulene dually targets mitochondria and endoplasmic reticulum, and initiates apoptosis via localized ROS induction upon light triggering. Mater. Sci. Eng. C 2020, 106, 110227.

35

Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self-assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.

36

Ye, Z. J.; Wei, L.; Li, Y. L.; Xiao, L. H. Efficient modulation of β-amyloid peptide fibrillation with polymer nanoparticles revealed by super-resolution optical microscopy. Anal. Chem. 2019, 91, 8582–8590.

37

Liu, S. H.; Lu, D.; Wang, X. C.; Ding, D.; Kong, D. L.; Wang, Z.; Zhao, Y. J. Topology dictates function: Controlled ROS production and mitochondria accumulation via curved carbon materials. J. Mater. Chem. B 2017, 5, 4918–4925.

38

Zhang, L. M.; Dong, X. P.; Lu, D.; Liu, S. H.; Ding, D.; Kong, D. L.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Controlled ROS production by corannulene: The vehicle makes a difference. Biomater. Sci. 2017, 5, 1236–1240.

39

Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem., Int. Ed. 2014, 53, 1382–1385.

40

Flors, C.; Ravarani, C. N. J.; Dryden, D. T. F. Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 2009, 10, 2201–2204.

41

Wirth, R.; Gao, P.; Nienhaus, G. U.; Sunbul, M.; Jäschke, A. SiRA: A silicon rhodamine-binding aptamer for live-cell super-resolution RNA imaging. J. Am. Chem. Soc. 2019, 141, 7562–7571.

42

Zhang, D.; Ye, Z. J.; Wei, L.; Luo, H. B.; Xiao, L. H. Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 39594–39602.

43

Li, Y. H.; Chen, C.; Xu, D.; Poon, C. Y.; Ho, S. L.; Zheng, R.; Liu, Q.; Song, G. L.; Li, H. W.; Wong, M. S. Effective theranostic cyanine for imaging of amyloid species in vivo and cognitive improvements in mouse model. ACS Omega 2018, 3, 6812–6819.

44

Prasad, A.; Sedlářová, M.; Pospíšil, P. Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci. Rep. 2018, 8, 13685.

45

Chen, Y. Y.; Zhong, H.; Wang, J. B.; Wan, X. Y.; Li, Y. H.; Pan, W.; Li, N.; Tang, B. Catalase-like metal–organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence. Chem. Sci. 2019, 10, 5773–5778.

46

Gu, X. G.; Zhang, X. Y.; Ma, H. L.; Jia, S. R.; Zhang, P. F.; Zhao, Y. J.; Liu, Q.; Wang, J. G.; Zheng, X. Y.; Lam, J. W. Y. et al. Corannulene-incorporated AIE nanodots with highly suppressed nonradiative decay for boosted cancer phototheranostics in vivo. Adv. Mater. 2018, 30, 1801065.

47

Qi, S. J.; Kwon, N.; Yim, Y.; Nguyen, V. N.; Yoon, J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem. Sci. 2020, 11, 6479–6484.

48

Dempsey, G. T.; Vaughan, J. C.; Chen, K. H.; Bates, M.; Zhuang, X. W. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 2011, 8, 1027–1036.

Nano Research
Pages 3387-3397
Cite this article:
Ma Y, Ye Z, Zhang C, et al. Curved carbon photo-oxygenation catalysts for the suppression and nanoscopic imaging of β-amyloid peptides fibrillation. Nano Research, 2022, 15(4): 3387-3397. https://doi.org/10.1007/s12274-021-3927-5
Topics:

841

Views

13

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 29 August 2021
Revised: 26 September 2021
Accepted: 02 October 2021
Published: 06 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return