The progression of Alzheimer’s disease (AD) is characterized with the deposition and aggregation of β-amyloid (Aβ). Visualizing Aβ aggregates at high spatial resolution is beneficial for AD diagnosis and treatment. Herein, we designed a new molecule by conjugating corannulene (Cor) with rhodamine B isothiocyanate (Rhb), namely Cor-Rhb, for the nanoscopic imaging and modulating Aβ peptide fibrillation. The low duty cycle, high photon output and sufficient switching cycles enable Cor-Rhb suitable for localization-based nanoscopic fluorescence imaging. We find that Cor-Rhb can inhibit Aβ peptides fibrillization and interact directly with mature fibrils, triggering their disaggregation under light illumination. Noticeably reduced Aβ-mediated cytotoxicity after the addition of Cor-Rhb is also confirmed. These explorations suggest that Cor-Rhb displays great potential as a multifunctional therapeutic agent against amyloid-related diseases, and may largely facilitate a variety of super-resolution based biological applications.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2022, 15(4): 3387-3397
Published: 06 November 2021
Downloads:57
Total 1