Graphical Abstract

The progression of Alzheimer’s disease (AD) is characterized with the deposition and aggregation of β-amyloid (Aβ). Visualizing Aβ aggregates at high spatial resolution is beneficial for AD diagnosis and treatment. Herein, we designed a new molecule by conjugating corannulene (Cor) with rhodamine B isothiocyanate (Rhb), namely Cor-Rhb, for the nanoscopic imaging and modulating Aβ peptide fibrillation. The low duty cycle, high photon output and sufficient switching cycles enable Cor-Rhb suitable for localization-based nanoscopic fluorescence imaging. We find that Cor-Rhb can inhibit Aβ peptides fibrillization and interact directly with mature fibrils, triggering their disaggregation under light illumination. Noticeably reduced Aβ-mediated cytotoxicity after the addition of Cor-Rhb is also confirmed. These explorations suggest that Cor-Rhb displays great potential as a multifunctional therapeutic agent against amyloid-related diseases, and may largely facilitate a variety of super-resolution based biological applications.
Habchi, J.; Arosio, P.; Perni, M.; Costa, A. R.; Yagi-Utsumi, M.; Joshi, P.; Chia, S.; Cohen, S. I. A.; Müller, M. B. D.; Linse, S. et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with alzheimer’s disease. Sci. Adv. 2016, 2, e1501244.
Suzuki, T.; Hori, Y.; Sawazaki, T.; Shimizu, Y.; Nemoto, Y.; Taniguchi, A.; Ozawa, S.; Sohma, Y.; Kanai, M.; Tomita, T. Photo-oxygenation inhibits tau amyloid formation. Chem. Commun. 2019, 55, 6165–6168.
Scheidt, T.; Łapińska, U.; Kumita, J. R.; Whiten, D. R.; Klenerman, D.; Wilson, M. R.; Cohen, S. I. A.; Linse, S.; Vendruscolo, M.; Dobson, C. M. et al. Secondary nucleation and elongation occur at different sites on alzheimer’s amyloid-β aggregates. Sci. Adv. 2019, 5, eaau3112.
Li, M.; Xu, C.; Ren, J. S.; Wang, E. B.; Qu, X. G. Photodegradation of β-sheet amyloid fibrils associated with alzheimer's disease by using polyoxometalates as photocatalysts. Chem. Commun. 2013, 49, 11394–11396.
Lee, B. I.; Suh, Y. S.; Chung, Y. J.; Yu, K.; Park, C. B. Shedding light on alzheimer’s β-amyloidosis: Photosensitized methylene blue inhibits self-assembly of β-amyloid peptides and disintegrates their aggregates. Sci. Rep. 2017, 7, 7523.
Song, Y.; Moore, E. G.; Guo, Y. S.; Moore, J. S. Polymer-peptide conjugates disassemble amyloid β fibrils in a molecular-weight dependent manner. J. Am. Chem. Soc. 2017, 139, 4298–4301.
Kim, D.; Yoo, J. M.; Hwang, H.; Lee, J.; Lee, S. H.; Yun, S. P.; Park, M. J.; Lee, M.; Choi, S.; Kwon, S. H. et al. Graphene quantum dots prevent α-synucleinopathy in parkinson’s disease. Nat. Nanotechnol. 2018, 13, 812–818.
Li, Y. H.; Xu, D.; Ho, S. L.; Li, H. W.; Yang, R. H.; Wong, M. S. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation. Biomaterials 2016, 94, 84–92.
Yang, W. G.; Wong, Y.; Ng, O. T. W.; Bai, L. P.; Kwong, D. W. J.; Ke, Y.; Jiang, Z. H.; Li, H. W.; Yung, K. K. L.; Wong, M. S. Inhibition of beta-amyloid peptide aggregation by multifunctional carbazole-based fluorophores. Angew. Chem., Int. Ed. 2012, 51, 1804–1810.
Han, Q. S.; Cai, S. F.; Yang, L.; Wang, X. H.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against alzheimer’s disease. ACS Appl. Mater. Interfaces 2017, 9, 21116–21123.
Bondia, P.; Torra, J.; Tone, C. M.; Sawazaki, T.; del Valle, A.; Sot, B.; Nonell, S.; Kanai, M.; Sohma, Y.; Flors, C. Nanoscale view of amyloid photodynamic damage. J. Am. Chem. Soc. 2020, 142, 922–930.
Son, G.; Lee, B. I.; Chung, Y. J.; Park, C. B. Light-triggered dissociation of self-assembled β-amyloid aggregates into small, nontoxic fragments by ruthenium (II) complex. Acta Biomater. 2018, 67, 147–155.
Chung, Y. J.; Lee, B. I.; Ko, J. W.; Park, C. B. Photoactive g-C3N4 nanosheets for light-induced suppression of alzheimer's β-amyloid aggregation and toxicity. Adv. Healthc. Mater. 2016, 5, 1560–1565.
Lee, B. I.; Lee, S.; Suh, Y. S.; Lee, J. S.; Kim, A. K.; Kwon, O. Y.; Yu, K.; Park, C. B. Photoexcited porphyrins as a strong suppressor of β-amyloid aggregation and synaptic toxicity. Angew. Chem., Int. Ed. 2015, 54, 11472–11476.
Lee, J. S.; Lee, B. I.; Park, C. B. Photo-induced inhibition of alzheimer's β-amyloid aggregation in vitro by rose bengal. Biomaterials 2015, 38, 43–49.
Ni, J. Z.; Taniguchi, A.; Ozawa, S.; Hori, Y.; Kuninobu, Y.; Saito, T.; Saido, T. C.; Tomita, T.; Sohma, Y.; Kanai, M. Near-infrared photoactivatable oxygenation catalysts of amyloid peptide. Chem 2018, 4, 807–820.
Ishida, Y.; Fujii, T.; Oka, K.; Takahashi, D.; Toshima, K. Inhibition of amyloid β aggregation and cytotoxicity by photodegradation using a designed fullerene derivative. Chem. —Asian J. 2011, 6, 2312–2315.
Bieschke, J.; Herbst, M.; Wiglenda, T.; Friedrich, R. P.; Boeddrich, A.; Schiele, F.; Kleckers, D.; Lopez del Amo, J. M.; Grüning, B. A.; Wang, Q. W. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol. 2012, 8, 93–101.
Kaminski Schierle, G. S.; van de Linde, S.; Erdelyi, M.; Esbjörner, E. K.; Klein, T.; Rees, E.; Bertoncini, C. W.; Dobson, C. M.; Sauer, M.; Kaminski, C. F. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 2011, 133, 12902–12905.
Cox, H.; Georgiades, P.; Xu, H.; Waigh, T. A.; Lu, J. R. Self-assembly of mesoscopic peptide surfactant fibrils investigated by STORM super-resolution fluorescence microscopy. Biomacromolecules 2017, 18, 3481–3491.
Beun, L. H.; Albertazzi, L.; van der Zwaag, D.; de Vries, R.; Cohen Stuart, M. A. Unidirectional living growth of self-assembled protein nanofibrils revealed by super-resolution microscopy. ACS Nano 2016, 10, 4973–4980.
Wu, L. L.; Huang, J. G.; Pu, K. Y.; James, T. D. Dual-locked spectroscopic probes for sensing and therapy. Nat. Rev. Chem. 2021, 5, 406–421.
Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.
Pinotsi, D.; Buell, A. K.; Galvagnion, C.; Dobson, C. M.; Kaminski Schierle, G. S.; Kaminski, C. F. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 2014, 14, 339–345.
Liang, Y.; Lynn, D. G.; Berland, K. M. Direct observation of nucleation and growth in amyloid self-assembly. J. Am. Chem. Soc. 2010, 132, 6306–6308.
Ries, J.; Udayar, V.; Soragni, A.; Hornemann, S.; Nilsson, K. P. R.; Riek, R.; Hock, C.; Ewers, H.; Aguzzi, A. A.; Rajendran, L. Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem. Neurosci. 2013, 4, 1057–1061.
Ye, Z. J.; Geng, X.; Wei, L.; Li, Z. H.; Lin, S.; Xiao, L. H. Length-dependent distinct cytotoxic effect of amyloid fibrils beyond optical diffraction limit revealed by nanoscopic imaging. ACS Nano 2021, 15, 934–943.
He, H.; Liu, X.; Li, S.; Wang, X. J.; Wang, Q.; Li, J. Q.; Wang, J. Y.; Ren, H.; Ge, B. S.; Wang, S. J. et al. High-density super-resolution localization imaging with blinking carbon dots. Anal. Chem. 2017, 89, 11831–11838.
Burnette, D. T.; Sengupta, P.; Dai, Y. H.; Lippincott-Schwartz, J.; Kachar, B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 2011, 108, 21081–21086.
Macdonald, P. J.; Gayda, S.; Haack, R. A.; Ruan, Q. Q.; Himmelsbach, R. J.; Tetin, S. Y. Rhodamine-derived fluorescent dye with inherent blinking behavior for super-resolution imaging. Anal. Chem. 2018, 90, 9165–9173.
Li, H. L.; Vaughan, J. C. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 2018, 118, 9412–9454.
Nestoros, E.; Stuparu, M. C. Corannulene: A molecular bowl of carbon with multifaceted properties and diverse applications. Chem. Commun. 2018, 54, 6503–6519.
Guo, X. L.; Lu, D.; Zhang, D.; Deng, J.; Zhang, X.; Wang, Z.; Xiao, L. H.; Zhao, Y. J. Curved corannulene dually targets mitochondria and endoplasmic reticulum, and initiates apoptosis via localized ROS induction upon light triggering. Mater. Sci. Eng. C 2020, 106, 110227.
Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self-assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.
Ye, Z. J.; Wei, L.; Li, Y. L.; Xiao, L. H. Efficient modulation of β-amyloid peptide fibrillation with polymer nanoparticles revealed by super-resolution optical microscopy. Anal. Chem. 2019, 91, 8582–8590.
Liu, S. H.; Lu, D.; Wang, X. C.; Ding, D.; Kong, D. L.; Wang, Z.; Zhao, Y. J. Topology dictates function: Controlled ROS production and mitochondria accumulation via curved carbon materials. J. Mater. Chem. B 2017, 5, 4918–4925.
Zhang, L. M.; Dong, X. P.; Lu, D.; Liu, S. H.; Ding, D.; Kong, D. L.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Controlled ROS production by corannulene: The vehicle makes a difference. Biomater. Sci. 2017, 5, 1236–1240.
Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem., Int. Ed. 2014, 53, 1382–1385.
Flors, C.; Ravarani, C. N. J.; Dryden, D. T. F. Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 2009, 10, 2201–2204.
Wirth, R.; Gao, P.; Nienhaus, G. U.; Sunbul, M.; Jäschke, A. SiRA: A silicon rhodamine-binding aptamer for live-cell super-resolution RNA imaging. J. Am. Chem. Soc. 2019, 141, 7562–7571.
Zhang, D.; Ye, Z. J.; Wei, L.; Luo, H. B.; Xiao, L. H. Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 39594–39602.
Li, Y. H.; Chen, C.; Xu, D.; Poon, C. Y.; Ho, S. L.; Zheng, R.; Liu, Q.; Song, G. L.; Li, H. W.; Wong, M. S. Effective theranostic cyanine for imaging of amyloid species in vivo and cognitive improvements in mouse model. ACS Omega 2018, 3, 6812–6819.
Prasad, A.; Sedlářová, M.; Pospíšil, P. Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci. Rep. 2018, 8, 13685.
Chen, Y. Y.; Zhong, H.; Wang, J. B.; Wan, X. Y.; Li, Y. H.; Pan, W.; Li, N.; Tang, B. Catalase-like metal–organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence. Chem. Sci. 2019, 10, 5773–5778.
Gu, X. G.; Zhang, X. Y.; Ma, H. L.; Jia, S. R.; Zhang, P. F.; Zhao, Y. J.; Liu, Q.; Wang, J. G.; Zheng, X. Y.; Lam, J. W. Y. et al. Corannulene-incorporated AIE nanodots with highly suppressed nonradiative decay for boosted cancer phototheranostics in vivo. Adv. Mater. 2018, 30, 1801065.
Qi, S. J.; Kwon, N.; Yim, Y.; Nguyen, V. N.; Yoon, J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem. Sci. 2020, 11, 6479–6484.
Dempsey, G. T.; Vaughan, J. C.; Chen, K. H.; Bates, M.; Zhuang, X. W. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 2011, 8, 1027–1036.