Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform

Jinzi Sun1,2Hui Du1Zhaojun Chen1()Lili Wang2,3()Guozhen Shen2,3()
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
Show Author Information

Graphical Abstract

View original image Download original image
The MXene quantum dot/watermelon peel (MQD/WMP) aerogel-based flexible sensor not only enhances the sensitivity due to inherent three-dimensional (3D) structure of natural biomaterials, and is also non-toxic, degradable and harmless to the environment and human body. This work provides a potential approach for a newgeneration human motion rehabilitation device with excellent performance.

Abstract

Environmentally friendly biomimetic materials with good deformability, high pressure-sensitive performance, and excellent biocompatibility are highly attractive for health monitoring, but to simultaneously meet these requirements is a formidable challenge. In this study, biocompatible MXene quantum dot (MQD)/watermelon peel (WMP) aerogels were obtained by immersing freeze-dried fresh watermelon peel into the quantum dot dispersion. The resulting bio-aerogels with a three-dimensional (3D) porous network structure exhibited a low in elasticity modulus (0.03 MPa) and limit of detection (0.4 Pa) and it showed biocompatibility. With a maximum pressure-sensitive response of 323 kPa-1, the 3D porous MQD/WMP aerogels exhibited good stability. In addition, the sensing signals could be displayed on mobile phones through a Bluetooth module to monitor human motion (pulse, sound, and walking) in real time. More importantly, the MQD/WMP aerogels exhibited excellent biocompatibility in a cytotoxicity test, thus decreasing the safety risk when they are applied to human skin. The finding in this study will facilitate the fabrication of high-performance biomimetic MXene active matrices, which are derived from natural biological materials, for flexible electronics.

Electronic Supplementary Material

Download File(s)
12274_2021_3967_MOESM1_ESM.pdf (929.1 KB)

References

1

Cools, A. M.; Maenhout, A. G.; Vanderstukken, F.; Declève, P.; Johansson, F. R.; Borms, D. The challenge of the sporting shoulder: From injury prevention through sport-specific rehabilitation toward return to play. Ann. Phys. Rehabil. Med. 2021, 64, 101384.

2

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

3

Wang, Z. R.; Wang, S.; Zeng, J. F.; Ren, X. C.; Chee, A. J. Y.; Yiu, B. Y. S.; Chung, W. C.; Yang, Y.; Yu, A. C. H.; Roberts, R. C. et al. High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing. Small 2016, 12, 3827–3836.

4

Chen, S. W.; Wu, N.; Lin, S. Z.; Duan, J. J.; Xu, Z. S.; Pan, Y.; Zhang, H. B.; Xu, Z. H.; Huang, L.; Hu, B. et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 2020, 70, 104460.

5

Wang, L. L.; Lou, Z.; Wang, K.; Zhao, S. F.; Yu, P. C.; Wei, W.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research 2020, 2020, 8716847.

6

Yang, J.; Luo, S.; Zhou, X.; Li, J. L.; Fu, J. T.; Yang, W. D.; Wei, D. P. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 2019, 11, 14997–15006.

7

Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A Wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143–1150.

8

Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040.

9

Lou, Z.; Wang, L. L.; Jiang, K.; Wei, Z. M.; Shen, G. Z. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523.

10

Li, X. P.; Li, Y.; Li, X. F.; Song, D. K.; Min, P.; Hu, C.; Zhang, H. B.; Koratkar, N.; Yu, Z. Z. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 2019, 542, 54–62.

11

Shi, L.; Li, Z.; Chen, M.; Qin, Y. J.; Jiang, Y. Z.; Wu, L. M. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 2020, 11, 3529.

12

Li, X.; Fan, Y. J.; Li, H. Y.; Cao, J. W.; Xiao, Y. C.; Wang, Y.; Liang, F.; Wang, H. L.; Jiang, Y.; Wang, Z. L. et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 2020, 14, 9605–9612.

13

Zhao, T. T.; Yuan, L.; Li, T. K.; Chen, L. L.; Li, X. F.; Zhang, J. H. Pollen-shaped hierarchical structure for pressure sensors with high sensitivity in an ultrabroad linear response range. ACS Appl. Mater. Interfaces 2020, 12, 55362–55371.

14

Wang, X. M.; Tao, L. Q.; Yuan, M.; Wang, Z. P.; Yu, J. B.; Xie, D. L.; Luo, F.; Chen, X. P.; Wong, C. P. Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 2021, 12, 1776.

15

Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V. et. al. Controlled assembly of MXene nanosheets as an electrode and active layer for high performance electronic skin. Adv. Funct. Mater. 2021, 31, 2010533.

16

Keum, K.; Eom, J.; Lee, J. H.; Heo, J. S.; Park, S. K.; Kim, Y. H. Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 2021, 79, 105479.

17

Si, Y.; Wang, X. Q.; Yan, C. C.; Yang, L.; Yu, J. Y.; Ding, B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 2016, 28, 9512–9518.

18

Li, H. F.; Ding, G. F.; Yang, Z. Q. A high sensitive flexible pressure sensor designed by silver nanowires embedded in polyimide (AgNW-PI). Micromachines 2019, 10, 206.

19

Shi, J. D.; Wang, L.; Dai, Z. H.; Zhao, L. Y.; Du, M. D.; Li, H. B.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, 1800819.

20

Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

21

Fu, Q. L.; Chen, Y.; Sorieul, M. Wood-based flexible electronics. ACS Nano 2020, 14, 3528–3538.

22

Wang, D. Y.; Wang, L. L.; Lou, Z.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 2020, 78, 105252.

23

Yu, S. X.; Li, L. L.; Wang, J. J.; Liu, E. P.; Zhao, J. X.; Xu, F.; Cao, Y. P.; Lu, C. H. Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 2020, 30, 1907091.

24

Li, Q. M.; Yin, R.; Zhang, D. B.; Liu, H.; Chen, X. Y.; Zheng, Y. J.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141.

25

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

26

Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S. Y.; Baig, C.; Ko, H. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 2018, 12, 3964–3974.

27

Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem. Eng. J. 2021, 420, 127720.

28

Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

29

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

30

Méndez, D. A.; Fabra, M. J.; Gómez-Mascaraque, L.; López-Rubio, A.; Martinez-Abad, A. Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods 2021, 10, 738.

31

Elsayes A.; Sharma V.; Yiannacou K.; Koivikko A.; Rasheed A.; Sariola V. Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer. Adv. Sustainable Syst. 2020, 4, 2000056.

32

Park, H.; Jeong, Y. R.; Hong, S. Y.; Jin, S. W.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.

33

Wang, L. L.; Chen, S.; Li, W.; Wang, K.; Lou, Z.; Shen, G. Z. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv. Mater. 2019, 31, 1804583.

34

Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.

35

Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, K.; Shen, G. Z.; Han, W. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021, 84, 105921.

36

Wang, D. Y.; Wang, L. L.; Shen, G. Z. Nanofiber/nanowires-based flexible and stretchable sensors. J. Semicond. 2020, 41, 041605.

37

Dong, K.; Wang, Z. L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J. Semicond. 2021, 42, 101601.

38

Fan, Z. Y.; Chen, Y. H.; Lin, Y. J.; Zi, Y. L.; Ko, H.; Zhang, Q. P. Preface to the special issue on flexible energy devices. J. Semicond. 2021, 42, 100101.

Nano Research
Pages 3653-3659
Cite this article:
Sun J, Du H, Chen Z, et al. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Research, 2022, 15(4): 3653-3659. https://doi.org/10.1007/s12274-021-3967-x
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return