AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices

Lei Yang1Xiaojun He1( )Yuchen Wei1Honghui Bi1Feng Wei1Hongqiang Li1Changzhou Yuan2( )Jieshan Qiu3( )
School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Key Lab of Metallurgical Emission Reduction and Resources Recycling, Ministry of Education, Anhui University of Technology, Maanshan 243002, China
School of Material Science and Engineering, University of Jinan, Jinan 250022, China
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Interconnected N/P co-doped carbon nanocage (NP-CNC) was synthesized from pyrene molecules by using MgO as template and melamine-phytic acid supramolecular aggregate (MPSA) as dopant coupled with KOH activation, presenting outstanding electrochemical properties as electrode material of energy storage devices.

Abstract

Heteroatom doping carbon materials exhibit a huge application potential for energy storage devices (ESDs). Herein, interconnected N/P co-doped carbon nanocage (NP-CNC) was synthesized from pyrene molecules by using nano-MgO as template and melamine-phytic acid supramolecular aggregate as dopant coupled with KOH activation. The as-prepared NP-CNC possesses interconnected nanocages for electron transportation and abundant micropores for ion adsorption. Moreover, co-doped N/P species in NP-CNC provide active sites and additional pseudocapacitance. Consequently, NP-CNC as electrode material for symmetric supercapacitor exhibits a high gravimetric capacitance of 435 F·g−1 at 0.05 A·g−1, high volumetric capacitance of 274 F·cm−3 at 0.032 A·cm−3, and long cycle lifespan with 96.1% capacitance retention after 50,000 cycles. Furthermore, NP-CNC as cathode for zinc-ion hybrid supercapacitor delivers satisfactory energy and power densities of 130.6 Wh·kg−1 (82.3 Wh·L−1) and 14.4 kW·kg−1 (9.1 kW·L−1). This work paves a promising approach to the preparation of high capacitance NP-CNC for ESDs.

Electronic Supplementary Material

Download File(s)
12274_2021_4003_MOESM1_ESM.pdf (3.6 MB)

References

1

Wang, C. J.; Liu, F.; Chen, J. S.; Yuan, Z. W.; Liu, C.; Zhang, X. S.; Xu, M. Y.; Wei, L.; Chen, Y. A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 2020, 32, 448–457.

2

Gou, Q. Z.; Zhao, S.; Wang, J. C.; Li, M.; Xue, J. M. Recent advances on boosting the cell voltage of aqueous supercapacitors. Nano-Micro Lett. 2020, 12, 98.

3

Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv. Mater. 2017, 29, 1604569.

4

Zuo, W. H.; Li, R. Z.; Zhou, C.; Li, Y. Y.; Xia, J. L.; Liu, J. P. Battery–supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 2017, 4, 1600539.

5

Yan, R. Y.; Antonietti, M.; Oschatz, M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy Mater. 2018, 8, 1800026.

6

Liu, M. Y.; Niu, J.; Zhang, Z. P.; Dou, M. L.; Wang, F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 2018, 51, 366–372.

7

Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

8

Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

9

Li, Z. W.; An, Y. F.; Dong, S. Y.; Chen, C. J.; Wu, L. Y.; Sun, Y.; Zhang, X. G. Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Mater. 2020, 31, 252–266.

10

Dong, L. B.; Yang, W.; Yang, W.; Li, Y.; Wu, W. J.; Wang, G. X. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 2019, 7, 13810–13832.

11

Lu, Y. Y.; Li, Z. W.; Bai, Z. Y.; Mi, H. Y.; Ji, C. C.; Pang, H.; Yu, C.; Qiu, J. S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132.

12

Li, Z. W.; Chen, D. H.; An, Y. F.; Chen, C. L.; Wu, L. Y.; Chen, Z. J.; Sun, Y.; Zhang, X. G. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020, 28, 307–314.

13

Liu, P. G.; Liu, W. F.; Huang, Y. P.; Li, P. L.; Yan, J.; Liu, K. Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020, 25, 858–865.

14

Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

15

Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

16

Yan, J.; Li, S. H.; Lan, B. B.; Wu, Y. C.; Lee, P. S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564.

17

Xie, X. Y.; He, X. J.; Zhang, H. F.; Wei, F.; Xiao, N.; Qiu, J. S. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem. Eng. J. 2018, 350, 49–56.

18

Díez, N.; Sevilla, M.; Fuertes, A. B. Synthesis strategies of templated porous carbons beyond the silica nanocasting technique. Carbon 2021, 178, 451–476.

19

Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem., Int. Ed. 2021, 60, 5114–5120.

20

Kado, Y.; Soneda, Y. Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Micropor. Mesopor. Mater. 2021, 310, 110646.

21

Bu, Y. F.; Sun, T.; Cai, Y. J.; Du, L. Y.; Zhuo, O.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 2017, 29, 1700470.

22

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

23

Fan, H.; Wang, Y.; Gao, F. J.; Yang, L. Q.; Liu, M.; Du, X.; Wang, P.; Yang, L. J.; Wu, Q.; Wang, X. Z. et al. Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Energy Chem. 2019, 34, 64–71.

24

Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536–544.

25

Ghosh, S.; Barg, S.; Jeong, S. M.; Ostrikov, K. K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 2020, 10, 2001239.

26

Li, Y.; Shan, Y. Y.; Pang, H. Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. Chin. Chem. Lett. 2020, 31, 2280–2286.

27

Liu, B. Q.; Zhang, Q.; Wang, Z.; Li, L.; Jin, Z. S.; Wang, C. G.; Zhang, L. Y.; Chen, L. H.; Su, Z. M. Nitrogen and sulfur-codoped porous carbon nanospheres with hierarchical micromesoporous structures and an ultralarge pore volume for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 8225–8232.

28

Cui, C. X.; Gao, Y.; Li, J.; Yang, C.; Liu, M.; Jin, H. L.; Xia, Z. H.; Dai, L. M.; Lei, Y.; Wang, J. C. et al. Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem., Int. Ed. 2020, 59, 7928–7933.

29

Bi, H. H.; He, X. J.; Zhang, H. F.; Li, H. Q.; Xiao, N.; Qiu, J. S. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renew. Energy 2021, 170, 188–196.

30

Zhang, Y.; Sun, Q.; Xia, K. S.; Han, B.; Zhou, C. G.; Gao, Q.; Wang, H. Q.; Pu, S.; Wu, J. P. Facile synthesis of hierarchically porous N/P codoped carbon with simultaneously high-level heteroatom-doping and moderate porosity for high-performance supercapacitor electrodes. ACS Sustainable Chem. Eng. 2019, 7, 5717–5726.

31

Jin, J. T.; Qiao, X. C.; Zhou, F.; Wu, Z. S.; Cui, L. F.; Fan, H. B. Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 17317–17325.

32

Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 55, 2230–2234.

33

Dong, S. A.; He, X. J.; Zhang, H. F.; Xie, X. Y.; Yu, M. X.; Yu, C.; Xiao, N.; Qiu, J. S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960.

34

Yao, B.; Peng, H. R.; Zhang, H. Z.; Kang, J. Z.; Zhu, C.; Delgado, G.; Byrne, D.; Faulkner, S.; Freyman, M.; Lu, X. H. et al. Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 2021, 21, 3731–3737.

35

Shang, Z.; An, X. Y.; Zhang, H.; Shen, M. X.; Baker, F.; Liu, Y. X.; Liu, L. Q.; Yang, J.; Cao, H. B.; Xu, Q. L. et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70.

36

Gao, S. S.; Tang, Y. K.; Wang, L.; Liu, L.; Sun, Z. P.; Wang, S.; Zhao, H. Y.; Kong, L. B.; Jia, D. Z. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3255–3263.

37

Gopalakrishnan, A.; Raju, T. D.; Badhulika, S. Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 2020, 168, 209–219.

38

Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555.

39

Quiroz-Cardoso, O.; Oros-Ruiz, S.; Solís-Gómez, A.; López, R.; Gómez, R. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel 2019, 237, 227–235.

40

Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

41

Song, Z. Y.; Duan, H.; Zhu, D. Z.; Lv, Y. K.; Xiong, W.; Cao, T. C.; Li, L. C.; Liu, M. X.; Gan, L. H. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a “water-in-salt” gel electrolyte. J. Mater. Chem. A 2019, 7, 15801–15811.

42

Wei, W.; Chen, Z. J.; Zhang, Y.; Chen, J.; Wan, L.; Du, C.; Xie, M. J.; Guo, X. F. Full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor. J. Energy Chem. 2020, 48, 277–284.

43

Li, X. X.; Zhu, P. Y.; Li, Q.; Xu, Y. X.; Zhao, Y.; Pang, H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020, 39, 680–687.

44

Wang, Y. H.; Liu, R. N.; Tian, Y. D.; Sun, Z.; Huang, Z. H.; Wu, X. L.; Li, B. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 384, 123263.

45

He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

46

Ma, C. R.; Yang, H. J.; Xu, Z. X.; Fu, Z. G.; Xie, Y. Y.; Zhang, H. T.; Hong, M.; Ma, Z. F.; Xiong, H.; Yuan, X. Z. Insights into high capacity and ultrastable carbonaceous anodes for potassium-ion storage via a hierarchical heterostructure. J. Mater. Chem. A 2020, 8, 2836–2842.

47

Wei, F.; He, X. J.; Ma, L. B.; Zhang, H. F.; Xiao, N.; Qiu, J. S. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 2020, 12, 82.

48

Cheng, J. X.; Lu, Z. J.; Zhao, X. F.; Chen, X. X.; Liu, Y. H. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. J. Power Sources 2021, 494, 229770.

49

Liu, F. Y.; Wang, Z. X.; Zhang, H. T.; Jin, L.; Chu, X.; Gu, B. N.; Huang, H. C.; Yang, W. Q. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 2019, 149, 105–116.

50

Miao, Y. L.; Ma, Y. L.; Wang, Q. Plasma-assisted simultaneous reduction and nitrogen/sulfur codoping of graphene oxide for high-performance supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 7597–7608.

51

Shao, J. Q.; Song, M. Y.; Wu, G.; Zhou, Y. H.; Wan, J. F.; Ren, X.; Ma, F. W. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating. Energy Storage Mater. 2018, 13, 57–65.

52

Wang, J. G.; Liu, H. Z.; Zhang, X. Y.; Shao, M. H.; Wei, B. Q. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. J. Mater. Chem. A 2018, 6, 17653–17661.

53

Zheng, L. P.; Tang, B.; Dai, X. C.; Xing, T.; Ouyang, Y. H.; Wang, Y.; Chang, B. B.; Shu, H. B.; Wang, X. Y. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chem. Eng. J. 2020, 399, 125671.

54

Zhang, X. H.; Li, H. X.; Qin, B.; Wang, Q.; Xing, X. H.; Yang, D. H.; Jin, L. E.; Cao, Q. Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors. J. Mater. Chem. A 2019, 7, 3298–3306.

55

Zhang, Y.; Liu, L.; Zhang, P. X.; Wang, J.; Xu, M.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chem. Eng. J. 2019, 355, 309–319.

56

Xu, P.; Gao, Q. M.; Ma, L.; Li, Z. Y.; Zhang, H.; Xiao, H.; Liang, X.; Zhang, T. F.; Tian, X. H.; Liu, C. H. A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitors. Carbon 2019, 149, 452–461.

57

Liu, T. Y.; Zhou, Z. P.; Guo, Y. C.; Guo, D.; Liu, G. L. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 2019, 10, 675.

58

Wu, S. L.; Chen, Y. T.; Jiao, T. P.; Zhou, J.; Cheng, J. Y.; Liu, B.; Yang, S. R.; Zhang, K. L.; Zhang, W. J. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80,000 cycles. Adv. Energy Mater. 2019, 9, 1902915.

59

Yin, J.; Zhang, W. L.; Wang, W. X.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705.

60

Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96–102.

61

Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

62

Zheng, Y. W.; Zhao, W.; Jia, D. D.; Liu, Y.; Cui, L.; Wei, D.; Zheng, R. K.; Liu, J. Q. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 2020, 387, 124161.

63

Deng, X. Y.; Li, J. J.; Shan, Z.; Sha, J. W.; Ma, L. Y.; Zhao, N. Q. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 2020, 8, 11617–11625.

Nano Research
Pages 4068-4075
Cite this article:
Yang L, He X, Wei Y, et al. Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Research, 2022, 15(5): 4068-4075. https://doi.org/10.1007/s12274-021-4003-x
Topics:

1125

Views

64

Crossref

63

Web of Science

63

Scopus

3

CSCD

Altmetrics

Received: 11 August 2021
Revised: 14 November 2021
Accepted: 17 November 2021
Published: 07 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return