Heteroatom doping carbon materials exhibit a huge application potential for energy storage devices (ESDs). Herein, interconnected N/P co-doped carbon nanocage (NP-CNC) was synthesized from pyrene molecules by using nano-MgO as template and melamine-phytic acid supramolecular aggregate as dopant coupled with KOH activation. The as-prepared NP-CNC possesses interconnected nanocages for electron transportation and abundant micropores for ion adsorption. Moreover, co-doped N/P species in NP-CNC provide active sites and additional pseudocapacitance. Consequently, NP-CNC as electrode material for symmetric supercapacitor exhibits a high gravimetric capacitance of 435 F·g−1 at 0.05 A·g−1, high volumetric capacitance of 274 F·cm−3 at 0.032 A·cm−3, and long cycle lifespan with 96.1% capacitance retention after 50,000 cycles. Furthermore, NP-CNC as cathode for zinc-ion hybrid supercapacitor delivers satisfactory energy and power densities of 130.6 Wh·kg−1 (82.3 Wh·L−1) and 14.4 kW·kg−1 (9.1 kW·L−1). This work paves a promising approach to the preparation of high capacitance NP-CNC for ESDs.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2022, 15(5): 4068-4075
Published: 07 January 2022
Downloads:110
Total 1