AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells

Qixin ZhuangHuaxin WangCong ZhangCheng GongHaiyun LiJiangzhao Chen( )Zhigang Zang( )
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
Show Author Information

Graphical Abstract

Ion diffusion-induced double layer doping strategy is conducive to improving the electrical propertiesof SnO2 and perovskite layers, and improving carrier transport and extraction. Moreover, thecrystallinity and grain size of perovskite films are enhanced after doping, achieving power conversionefficiency (PCE) and enhanced stability.

Abstract

The perovskite layer, electron transport layer (ETL) and their interface are closely associated with carrier transport and extraction, which possess a pronounced effect on current density. Consequently, the dissatisfactory electric properties of functional layers pose a serious challenge for maximizing the thermodynamic potential of current density of perovskite solar cells (PSCs). Herein, we report an ion diffusion-induced double layer doping strategy for efficient and stable PSCs, where LiOH is directly added into SnO2 colloidal dispersion solution. It is uncovered that a small amount of Li+ ions remain in the ETL and doped SnO2 while a large amount of Li+ ions diffuse to SnO2/perovskite interface and into perovskite layer and gradient concentration distribution is spontaneously formed. The Li+ ion doping endows both perovskite and SnO2 layers improved electric properties, which contributes to facilitated carrier transport and extraction. Moreover, the crystallinity and grain size of perovskite films are enhanced after doping. The doped device delivers a higher power conversion efficiency (PCE) of 21.31% together with improved ambient stability in comparison with the control device (PCE = 19.26%). This work demonstrates a simple and effective ion diffusion-induced double layer by chemical doping strategy to advance the development of perovskite photovoltaics.

Electronic Supplementary Material

Download File(s)
12274_2022_4135_MOESM1_ESM.pdf (939.1 KB)

References

1

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

2

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

3

Zhou, T. W.; Wang, M.; Zang, Z. G.; Fang, L. Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2. Adv. Energy Mater. 2019, 9, 1900664.

4

Kim, M.; Kim, G. H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192.

5

Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

6

Dong, Q. F.; Fang, Y. J.; Shao, Y. H.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH 3NH3PbI3 single crystals. Science 2015, 347, 967–970.

7

Chen, Y. H.; Tan, S. Q.; Li, N. X.; Huang, B. L.; Niu, X. X.; Li, L.; Sun, M. Z.; Zhang, Y.; Zhang, X.; Zhu, C. et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 2020, 4, 1961–1976.

8

Park, B. W.; Kwon, H. W.; Lee, Y. H.; Lee, D. Y.; Kim, M. G.; Kim, G.; Kim, K. J.; Kim, Y. K.; Im, J.; Shin, T. J. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 2021, 6, 419–428.

9

You, S.; Zeng, H. P.; Ku, Z. L.; Wang, X. Z.; Wang, Z.; Rong, Y. G.; Zhao, Y.; Zheng, X.; Luo, L.; Li, L. et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 2020, 32, 2003990.

10

Lu, H. Z.; Krishna, A.; Zakeeruddin, S. M.; Grätzel, M.; Hagfeldt, A. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 2020, 23, 101359.

11

Lu, H. Z.; Liu, Y. H.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y. G.; Fu, F.; Wang, Z. W.; Avalos, C. E. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 2020, 370, eabb8985.

12

Chen, J. Z.; Park, N. G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 2020, 5, 2742–2786.

13

Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; De Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

14

Roose, B.; Baena, J. P. C.; Gödel, K. C.; Graetzel, M.; Hagfeldt, A.; Steiner, U.; Abate, A. Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy 2016, 30, 517–522.

15
Zhang, C.; Wang, H. X.; Li, H. Y.; Zhuang, Q. X.; Gong, C.; Hu, X. F.; Cai, W. S.; Zhao, S. Y.; Chen, J. Z.; Zang, Z. G. Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 2021, in press, DOI: 10.1016/j.jechem.2021.07.011.https://doi.org/10.1016/j.jechem.2021.07.011
16

Xiong, L. B.; Qin, M. C.; Yang, G.; Guo, Y. X.; Lei, H. W.; Liu, Q.; Ke, W. J.; Tao, H.; Qin, P. L.; Li, S. Z. et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: Electrical characterization and understanding of the mechanism. J. Mater. Chem. A 2016, 4, 8374–8383.

17

Abulikemu, M.; Neophytou, M.; Barbé, J. M.; Tietze, M. L.; El Labban, A.; Anjum, D. H.; Amassian, A.; McCulloch, I.; Del Gobbo, S. Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 7759–7763.

18

Baena, J. P. C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Kandada, A. R. S.; Zakeeruddin, S. M. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934.

19

Wang, C. L.; Zhao, D. W.; Grice, C. R.; Liao, W. Q.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P. J.; Chen, J.; Yu, Z. H. et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 12080–12087.

20

Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 2016, 9, 3128–3134.

21

Bu, T. L.; Liu, X. P.; Zhou, Y.; Yi, J. P.; Huang, X.; Luo, L.; Xiao, J. Y.; Ku, Z. L.; Peng, Y.; Huang, F. Z. et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509–2515.

22

Chen, J. Z.; Zhao, X.; Kim, S. G.; Park, N. G. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 2019, 31, 1902902.

23

Bi, H.; Zuo, X.; Liu, B. B.; He, D. M.; Bai, L.; Wang, W. Q.; Li, X.; Xiao, Z. Y.; Sun, K.; Song, Q. L. et al. Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2021, 9, 3940–3951.

24

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

25

Lee, S. H.; Jeong, S.; Seo, S.; Shin, H.; Ma, C. Q.; Park, N. G. Acid dissociation constant: A criterion for selecting passivation agents in perovskite solar cells. ACS Energy Lett. 2021, 6, 1612–1621.

26

Li, N. X.; Niu, X. X.; Li, L.; Wang, H.; Huang, Z. J.; Zhang, Y.; Chen, Y. H.; Zhang, X.; Zhu, C.; Zai, H. C. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 2021, 373, 561–567.

27

Ye, F. H.; Ma, J. J.; Chen, C.; Wang, H. B.; Xu, Y. H.; Zhang, S. P.; Wang, T.; Tao, C.; Fang, G. J. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 2021, 33, 2007126.

28

Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.

29

Jeong, J.; Kim, M.; Seo, J.; Lu, H. Z.; Ahlawat, P.; Mishra, A.; Yang, Y. G.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.

30

Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.

31

Jiang, E. S.; Ai, Y. Q.; Yan, J.; Li, N.; Lin, L. J.; Wang, Z. G.; Shou, C. H.; Yan, B. J.; Zeng, Y. H.; Sheng, J. et al. Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 36727–36734.

32

Qian, Z. Y.; Chen, L. B.; Wang, J. P.; Wang, L.; Xia, Y. D.; Ran, X. Q.; Li, P.; Zhong, Q.; Song, L.; Müller-Buschbaum, P. et al. Manipulating SnO2 growth for efficient electron transport in perovskite solar cells. Adv. Mater. Interfaces 2021, 8, 2100128.

33

Li, Z. C.; Gao, Y. F.; Zhang, Z. H.; Xiong, Q.; Deng, L. H.; Li, X. C.; Zhou, Q.; Fang, Y. X.; Gao, P. cPCN-regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 2021, 13, 101.

34

Anaraki, E. H.; Kermanpur, A.; Mayer, M. T.; Steier, L.; Ahmed, T.; Turren-Cruz, S. H.; Seo, J.; Luo, J. S.; Zakeeruddin, S. M.; Tress, W. R. et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett. 2018, 3, 773–778.

35

Deng, K. M.; Chen, Q. H.; Li, L. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability. Adv. Funct. Mater. 2020, 30, 2004209.

36

Wang, S.; Liu, B.; Zhu, Y.; Ma, Z. R.; Liu, B. B.; Miao, X.; Ma, R. X.; Wang, C. Y. Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Solar Energy 2018, 169, 335–342.

37

Giordano, F.; Abate, A.; Baena, J. P. C.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379.

38

Xia, X. F.; Jiang, Y. H.; Wan, Q. X.; Wang, X. F.; Wang, L.; Li, F. Lithium and silver co-doped nickel oxide hole-transporting layer boosting the efficiency and stability of inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 44501–44510.

39

Chen, W.; Liu, F. Z.; Feng, X. Y.; Djurišić, A. B.; Chan, W. K.; He, Z. B. Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700722.

40

Chen, J. Z.; Park, N. G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019, 31, 1803019.

41

Bi, H.; Liu, B. B.; He, D. M.; Bai, L.; Wang, W. Q.; Zang, Z. G.; Chen, J. Z. Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem. Eng. J. 2021, 418, 129375.

42

Liu, B. B.; Bi, H.; He, D. M.; Bai, L.; Wang, W. Q.; Yuan, H. K.; Song, Q. L.; Su, P. Y.; Zang, Z. G.; Zhou, T. W. et al. Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 2021, 6, 2526–2538.

43

Zhu, L. H.; Zhang, X.; Li, M. J.; Shang, X. N.; Lei, K. X.; Zhang, B. X.; Chen, C.; Zheng, S. J.; Song, H. W.; Chen, J. Z. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 2021, 11, 2100529.

44

Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

45

Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 2015, 5, 1501310.

46

Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209.

47

Tang, Z. G.; Uchida, S.; Bessho, T.; Kinoshita, T.; Wang, H. B.; Awai, F.; Jono, R.; Maitani, M. M.; Nakazaki, J.; Kubo, T. et al. Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance. Nano Energy 2018, 45, 184–192.

48

Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 2018, 140, 1358–1364.

49

Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497–501.

50

Zheng, F.; Chen, W. J.; Bu, T. L.; Ghiggino, K. P.; Huang, F. Z.; Cheng, Y. B.; Tapping, P.; Kee, T. W.; Jia, B. H.; Wen, X. M. Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv. Energy Mater. 2019, 9, 1901016.

51

Sheng, Y. S.; Hu, Y.; Mei, A. Y.; Jiang, P.; Hou, X. M.; Duan, M.; Hong, L.; Guan, Y. J.; Rong, Y. G.; Xiong, Y. L. et al. Enhanced electronic properties in CH3NH3PbI3 via LiCl mixing for hole-conductor-free printable perovskite solar cells. J. Mater. Chem. A 2016, 4, 16731–16736.

52

Södergren, S.; Siegbahn, H.; Rensmo, H.; Lindström, H.; Hagfeldt, A.; Lindquist, S. E. Lithium intercalation in nanoporous anatase TiO2 studied with XPS. J. Phys. Chem. B 1997, 101, 3087–3090.

53

Han, Q. F.; Bae, S. H.; Sun, P. Y.; Hsieh, Y. T.; Yang, Y.; Rim, Y. S.; Zhao, H. X.; Chen, Q.; Shi, W. Z.; Li, G. et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties. Adv. Mater. 2016, 28, 2253–2258.

54

Liu, Z. Z.; Deng, K. M.; Hu, J.; Li, L. Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem., Int. Ed. 2019, 58, 11497–11504.

55

Martin, S. T.; Herrmann, H.; Choi, W.; Hoffmann, M. R. Time-resolved microwave conductivity. Part 1. -TiO2 photoreactivity and size quantization. J. Chem. Soc. Faraday Trans. 1994, 90, 3315–3322.

56

Chen, J. Z.; Kim, S. G.; Ren, X. D.; Jung, H. S.; Park, N. G. Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. J. Mater. Chem. A 2019, 7, 4977–4987.

57

Li, Y. W.; Meng, L.; Yang, Y.; Xu, G. Y.; Hong, Z. R.; Chen, Q.; You, J. B.; Li, G.; Yang, Y.; Li, Y. F. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 2016, 7, 10214.

58

Wang, H. X.; Li, H. Y.; Cao, S. L.; Wang, M.; Chen, J. Z.; Zang, Z. G. Interface modulator of ultrathin magnesium oxide for low-temperature-processed inorganic CsPbIBr2 perovskite solar cells with efficiency over 11%. Solar RRL 2020, 4, 2000226.

59

Chen, J. Z.; Kim, S. G.; Park, N. G. FA0.88Cs0.12PbI3−x(PF6)x interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 2018, 30, 1801948.

Nano Research
Pages 5114-5122
Cite this article:
Zhuang Q, Wang H, Zhang C, et al. Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano Research, 2022, 15(6): 5114-5122. https://doi.org/10.1007/s12274-022-4135-7
Topics:

1178

Views

51

Crossref

58

Web of Science

56

Scopus

0

CSCD

Altmetrics

Received: 25 October 2021
Revised: 12 December 2021
Accepted: 03 January 2022
Published: 10 March 2022
© Tsinghua University Press 2022
Return