Sort:
Open Access Research Article Issue
Stable yellow light emission from lead-free copper halides single crystals for visible light communication
Nano Materials Science 2023, 5(1): 78-85
Published: 01 April 2022
Abstract PDF (7.7 MB) Collect
Downloads:4

Yellow light-emitting diodes (LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3 single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield (PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 ​h. Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature (CCT) of 4290 ​K, a Commission Internationale de l'Eclairage (CIE) coordinate of (0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100 ​℃. Finally, the yellow LEDs facilitate the application in wireless visible light communication (VLC), which show a −3 dB bandwidth of 21.5 ​MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing (OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3 in the field of yellow illumination and wireless VLC.

Research Article Issue
Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells
Nano Research 2022, 15(6): 5114-5122
Published: 10 March 2022
Abstract PDF (17.4 MB) Collect
Downloads:91

The perovskite layer, electron transport layer (ETL) and their interface are closely associated with carrier transport and extraction, which possess a pronounced effect on current density. Consequently, the dissatisfactory electric properties of functional layers pose a serious challenge for maximizing the thermodynamic potential of current density of perovskite solar cells (PSCs). Herein, we report an ion diffusion-induced double layer doping strategy for efficient and stable PSCs, where LiOH is directly added into SnO2 colloidal dispersion solution. It is uncovered that a small amount of Li+ ions remain in the ETL and doped SnO2 while a large amount of Li+ ions diffuse to SnO2/perovskite interface and into perovskite layer and gradient concentration distribution is spontaneously formed. The Li+ ion doping endows both perovskite and SnO2 layers improved electric properties, which contributes to facilitated carrier transport and extraction. Moreover, the crystallinity and grain size of perovskite films are enhanced after doping. The doped device delivers a higher power conversion efficiency (PCE) of 21.31% together with improved ambient stability in comparison with the control device (PCE = 19.26%). This work demonstrates a simple and effective ion diffusion-induced double layer by chemical doping strategy to advance the development of perovskite photovoltaics.

Total 2