Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory

Li Liu1,2Hao Wang2Qilong Wu1Kang Wu2Yuan Tian1Haitao Yang2Cheng Min Shen2,3Lihong Bao2,3()Zhihui Qin1()Hong-Jun Gao2,3
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
Show Author Information

Graphical Abstract

View original image Download original image
Ferroelectric-gated ReS2 field-effect transistor possesses high write/erase ratios of over 107, robustretention characteristics of longer than 2,000 s, reliable endurance performance greater than 2,000cycles, performed by continuous write and erase operations with 1 ms pulses of ±25 V amplitudes.Furthermore, the measured performances of the device have negligible changes after 10 days.

Abstract

Ferroelectric field-effect transistors (FeFET) with nondestructive readout capability have emerged as an attractive candidate for next-generation nonvolatile memory technology. Herein, we demonstrate ferroelectric-gated nonvolatile memory featuring a top gate architecture by combining multi-layer ReS2 with ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films. The ReS2 FeFET using hBN as substrate shows a large memory window of ~ 30 V. Repeated write/erase operations are successfully performed by applying pulse voltage of ±25 V with 1 ms width to the ferroelectric P(VDF-TrFE), and an ultra-high write/erase ratio of ~ 107 can be achieved. Furthermore, the ReS2 FeFET shows stable data retention capability of longer than 2,000 s and reliable endurance of greater than 2,000 cycles. These characteristics highlight that such ferroelectric-gated nonvolatile memory has great potential in future non-volatile memory applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4142_MOESM1_ESM.pdf (4.7 MB)

References

1
Gantz, J.; Reinsel, D. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far East. IDC iView: IDC Analyze the future [online] 2012, 2007, https://it4sec.org/article/digital-universe-2020-big-data-bigger-digital-shadows-and-biggest-growth-far-east (accessed Oct. 15, 2021) .
2

Xia, X.; Fu, J. J.; Zi, Y. L. A universal standardized method for output capability assessment of nanogenerators. Nat. Commun. 2019, 10, 4428.

3

Singh, R.; Singh, E.; Nalwa, H. S. Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 2017, 7, 48597–48630.

4

Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156.

5

Sun, L. F.; Zhang, Y. S.; Han, G.; Hwang, G.; Jiang, J. B.; Joo, B.; Watanabe, K.; Taniguchi, T.; Kim, Y. M.; Yu, W. J. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 2019, 10, 3161.

6

Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

7

Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832.

8

Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.

9

Chen, E.; Apalkov, D.; Diao, Z.; Driskill-Smith, A.; Druist, D.; Lottis, D.; Nikitin, V.; Tang, X.; Watts, S.; Wang, S. et al. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 2010, 46, 1873–1878.

10

Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S. N. Spintronics based random access memory: A review. Mater. Today 2017, 20, 530–548.

11

Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36.

12

Linn, E.; Rosezin, R.; Kügeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406.

13

Kools, J. C. S. Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 1996, 32, 3165–3184.

14

Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Magnetically engineered spintronic sensors and memory. Proc. IEEE 2003, 91, 661–680.

15

Zheng, Y.; Ni, G. X.; Toh, C. T.; Zeng, M. G.; Chen, S. T.; Yao, K.; Özyilmaz, B. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 2009, 94, 163505.

16

Sakai, S.; Takahashi, M. Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 2010, 3, 4950–4964.

17

Park, N.; Kang, H.; Park, J.; Lee, Y.; Yun, Y.; Lee, J. H.; Lee, S. G.; Lee, Y. H.; Suh, D. Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field-effect transistor. ACS Nano 2015, 9, 10729–10736.

18

Mathews, S.; Ramesh, R.; Venkatesan, T.; Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 1997, 276, 238–240.

19

Yurchuk, E.; Müller, J.; Paul, J.; Schlösser, T.; Martin, D.; Hoffmann, R.; Müeller, S.; Slesazeck, S.; Schröeder, U.; Boschke, R. et al. Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Trans. Electron Devices 2014, 61, 3699–3706.

20

Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33, 917–978.

21

Chen, Y.; Wang, X. D.; Wang, P.; Huang, H.; Wu, G. J.; Tian, B. B.; Hong, Z. C.; Wang, Y. T.; Sun, S.; Shen, H. et al. Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer. ACS Appl. Mater. Interfaces 2016, 8, 32083–32088.

22

Zhou, C. J.; Chai, Y. Ferroelectric-gated two-dimensional-material-based electron devices. Adv. Electron. Mater. 2017, 3, 1600400.

23

Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. Q. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43–50.

24

Nguyen, A.; Sharma, P.; Scott, T.; Preciado, E.; Klee, V.; Sun, D. Z.; Lu, I. H.; Barroso, D.; Kim, S.; Shur, V. Y. et al. Toward ferroelectric control of monolayer MoS2. Nano Lett. 2015, 15, 3364–3369.

25

Hu, W. N.; Sheng, Z.; Hou, X.; Chen, H. W.; Zhang, Z. X.; Zhang, D. W.; Zhou, P. Ambipolar 2D semiconductors and emerging device applications. Small Methods 2021, 5, 2000837.

26

Ko, C.; Lee, Y.; Chen, Y. B.; Suh, J.; Fu, D. Y.; Suslu, A.; Lee, S.; Clarkson, J. D.; Choe, H. S.; Tongay, S. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv. Mater. 2016, 28, 2923–2930.

27

Liu, L.; Wu, L. M.; Wang, A. W.; Liu, H. T.; Ma, R. S.; Wu, K.; Chen, J. C.; Zhou, Z.; Tian, Y.; Yang, H. T. et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity. Nano Lett. 2020, 20, 6666–6673.

28

Lee, Y. T.; Kwon, H.; Kim, J. S.; Kim, H. H.; Lee, Y. J.; Lim, J. A.; Song, Y. W.; Yi, Y.; Choi, W. K.; Hwang, D. K. et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. ACS Nano 2015, 9, 10394–10401.

29

Wang, X. D.; Liu, C. S.; Chen, Y.; Wu, G. J.; Yan, X.; Huang, H.; Wang, P.; Tian, B. B.; Hong, Z. C.; Wang, Y. T. et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater. 2017, 4, 025036.

30

Cui, Q. N.; Zhao, H. Coherent control of nanoscale ballistic currents in transition metal dichalcogenide ReS2. ACS Nano 2015, 9, 3935–3941.

31

Corbet, C. M.; McClellan, C.; Rai, A.; Sonde, S. S.; Tutuc, E.; Banerjee, S. K. Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano 2015, 9, 363–370.

32

Li, X. B.; Chen, C.; Yang, Y.; Lei, Z. B.; Xu, H. 2D re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

33

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

34

Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

35

Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.

36

Yu, W.; Wang, Z. S.; Zhao, X. X.; Wang, J. Y.; Herng, T. S.; Ma, T.; Zhu, Z. Y.; Ding, J.; Eda, G.; Pennycook, S. J. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 2020, 30, 2003057.

37

Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

38

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

39

Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

40

Raagulan, K.; Kim, B. M.; Chai, K. Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 2020, 10, 702.

41

Liu, L.; Hou, X.; Zhang, H.; Wang, J. L.; Zhou, P. Ferroelectric field-effect transistors for logic and in-situ memory applications. Nanotechnology 2020, 31, 424007.

42

Konno, A.; Shiga, K.; Suzuki, H.; Koda, T.; Ikeda, S. Polarization reversal in ferroelectric fluoro-polymers. Jpn. J. Appl. Phys. 2000, 39, 5676–5678.

43

Lee, K. H.; Lee, G.; Lee, K.; Oh, M. S.; Im, S.; Yoon, S. M. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv. Mater. 2009, 21, 4287–4291.

44

Su, M.; Yang, Z. Y.; Liao, L.; Zou, X. M.; Ho, J. C.; Wang, J. L.; Wang, J. L.; Hu, W. D.; Xiao, X. H.; Jiang, C. Z. et al. Side-gated In2O3 nanowire ferroelectric FETs for high-performance nonvolatile memory applications. Adv. Sci. 2016, 3, 1600078.

45

Kang, S. J.; Bae, I.; Park, Y. J.; Park, T. H.; Sung, J.; Yoon, S. C.; Kim, K. H.; Choi, D. H.; Park, C. Non-volatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on a single-crystalline tri-isopropylsilylethynyl pentacene field-effect transistor. Adv. Funct. Mater. 2009, 19, 1609–1616.

46

Kang, S. J.; Bae, I.; Shin, Y. J.; Park, Y. J.; Huh, J.; Park, S. M.; Kim, H. C.; Park, C. Nonvolatile polymer memory with nanoconfinement of ferroelectric crystals. Nano Lett. 2011, 11, 138–144.

47

Raghavan, S.; Stolichnov, I.; Setter, N.; Heron, J. S.; Tosun, M.; Kis, A. Long-term retention in organic ferroelectric-graphene memories. Appl. Phys. Lett. 2012, 100, 023507.

48

Lee, H. S.; Min, S. W.; Park, M. K.; Lee, Y. T.; Jeon, P. J.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 2012, 8, 3111–3115.

49

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

50

Kinoshita, K.; Moriya, R.; Onodera, M.; Wakafuji, Y.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 2019, 3, 22.

51

Onodera, M.; Masubuchi, S.; Moriya, R.; Machida, T. Assembly of van der Waals heterostructures: Exfoliation, searching, and stacking of 2D materials. Jpn. J. Appl. Phys. 2020, 59, 010101.

Nano Research
Pages 5443-5449
Cite this article:
Liu L, Wang H, Wu Q, et al. Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory. Nano Research, 2022, 15(6): 5443-5449. https://doi.org/10.1007/s12274-022-4142-8
Topics:
Metrics & Citations  
Article History
Copyright
Return