Graphical Abstract

Regarding the reverse process of materials growth, etching has been widely concerned to indirectly probe the growth kinetics, offering an avenue in governing the growth of two-dimensional (2D) materials. In this work, interface-driven anisotropic etching mode is demonstrated for the first time to be generally applied to 2D heterostructures. It is shown that the typical in-plane graphene and hexagonal boron nitride (h-BN) heterostructures follow a multi-stage etching behavior initiated first along the interfacial region between the two materials and then along edges of neighboring h-BN flakes and finally along central edges of h-BN. By accurately tuning etching conditions in the chemical vapor deposition process, series of etched 2D heterostructure patterns are controllably produced. Furthermore, scaled formation of graphene and h-BN heterostructures arrays has been realized with full assist of as-proposed etching mechanism, offering a direct top-down method to make 2D orientated heterostructures with order and complexity. Detection of interface-driven multi-staged anisotropic etching mode will shed light on understanding growth mechanism and further expanding wide applications of 2D heterostructures.
Munkhbat, B.; Yankovich, A. B.; Baranov, D. G.; Verre, R.; Olsson, E.; Shegai, T. O. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 2020, 11, 4604.
Jessen, B. S.; Gammelgaard, L.; Thomsen, M. R.; Mackenzie, D. M. A.; Thomsen, J. D.; Caridad, J. M.; Duegaard, E.; Watanabe, K.; Taniguchi, T.; Booth, T. J. et al. Lithographic band structure engineering of graphene. Nat. Nanotechnol. 2019, 14, 340–346.
Geng, D. C.; Wang, H. P.; Wan, Y.; Xu, Z. P.; Luo, B. R.; Xu, J.; Yu, G. Direct top-down fabrication of large-area graphene arrays by an in situ etching method. Adv. Mater. 2015, 27, 4195–4199.
Ma, T.; Ren, W. C.; Liu, Z. B.; Huang, L.; Ma, L. P.; Ma, X. L.; Zhang, Z. Y.; Peng, L. M.; Cheng, H. M. Repeated growth-etching-regrowth for large-area defect-free single-crystal graphene by chemical vapor deposition. ACS Nano 2014, 8, 12806–12813.
Grau-Carbonell, A.; Sadighikia, S.; Welling, T. A. J.; Van Dijk-Moes, R. J. A.; Kotni, R.; Bransen, M.; Van Blaaderen, A.; Van Huis, M. A. In situ study of the wet chemical etching of SiO2 and nanoparticle@SiO2 core–shell nanospheres. ACS Appl. Nano Mater. 2021, 4, 1136–1148.
Luo, B. R.; Gao, E. L.; Geng, D. C.; Wang, H. P.; Xu, Z. P.; Yu, G. Etching-controlled growth of graphene by chemical vapor deposition. Chem. Mater. 2017, 29, 1022–1027.
Zhang, Y.; Li, Z.; Kim, P.; Zhang, L. Y.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.
Geng, D. C.; Wu, B.; Guo, Y. L.; Luo, B. R.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Fractal etching of graphene. J. Am. Chem. Soc. 2013, 135, 6431–6434.
Sun, H. B.; Dong, J. C.; Liu, F. N.; Ding, F. Etching of two-dimensional materials. Mater. Today 2021, 42, 192–213.
Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.
Paul, K. K.; Kim, J. H.; Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 2021, 3, 178–192.
Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.
Ma, B. J.; Ren, S. Z.; Wang, P. Q.; Jia, C. C.; Guo, X. F. Precise control of graphene etching by remote hydrogen plasma. Nano Res. 2019, 12, 137–142.
Wang, L. F.; Wu, B.; Jiang, L. L.; Chen, J. S.; Li, Y. T.; Guo, W.; Hu, P. A.; Liu, Y. Q. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 2015, 27, 4858–4864.
Stehle, Y. Y.; Sang, X. H.; Unocic, R. R.; Voylov, D.; Jackson, R. K.; Smirnov, S.; Vlassiouk, I. Anisotropic etching of hexagonal boron nitride and graphene: Question of edge terminations. Nano Lett. 2017, 17, 7306–7314.
Geng, D. C.; Dong, J. C.; Ang, L. K.; Ding, F.; Yang, H. Y. In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains. NPG Asia Mater. 2019, 11, 56.
Guo, W.; Jing, F.; Xiao, J.; Zhou, C.; Lin, Y. W.; Wang, S. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv. Mater. 2016, 28, 3152–3158.
Li, X. F.; Dong, J. C.; Idrobo, J. C.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K. Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc. 2017, 139, 482–491.
Zhao, Z. J.; Chen, X. P.; Zhang, C. K.; Wan, W.; Shan, Z. F.; Tian, B.; Li, Q. Y.; Ying, H.; Zhuang, P. P.; Kaner, R. B. et al. An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket. Carbon 2016, 106, 279–283.
Wang, Z. J.; Dong, J. C.; Li, L. F.; Dong, G. C.; Cui, Y.; Yang, Y.; Wei, W.; Blume, R.; Li, Q.; Wang, L. et al. The coalescence behavior of two-dimensional materials revealed by multiscale in situ imaging during chemical vapor deposition growth. ACS Nano 2020, 14, 1902–1918.
Wang, G. L.; Wu, S.; Zhang, T. T.; Chen, P.; Lu, X. B.; Wang, S. P.; Wang, D. M.; Watanabe, K.; Taniguchi, T.; Shi, D. X. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 2016, 109, 053101.
Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.
Dong, J. C.; Geng, D. C.; Liu, F. N.; Ding, F. Formation of twinned graphene polycrystals. Angew. Chem., Int. Ed. 2019, 58, 7723–7727.
Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.
Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.
Chen, X.; Yang, H.; Wu, B.; Wang, L. F.; Fu, Q.; Liu, Y. Q. Epitaxial growth of h-BN on templates of various dimensionalities in h-BN-graphene material systems. Adv. Mater. 2019, 31, 1805582.
He, T.; Wang, Z.; Zhong, F.; Fang, H. H.; Wang, P.; Hu, W. D. Etching techniques in 2D materials. Adv. Mater. Technol. 2019, 4, 1900064.
Yi, K. Y.; Liu, D. H.; Chen, X. S.; Yang, J.; Wei, D. P.; Liu, Y. Q.; Wei, D. C. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Acc. Chem. Res. 2021, 54, 1011–1022.
Chaturvedi, A.; Chen, B.; Zhang, K. K.; He, Q. Y.; Nam, G. H.; You, L.; Lai, Z. C.; Tan, C. L.; Tran, T. H.; Liu, G. G. et al. A universal method for rapid and large-scale growth of layered crystals. SmartMat 2020, 1, e1011.
Matsui, T.; Sato, H.; Kita, K.; Amend, A. E. B.; Fukuyama, H. Hexagonal nanopits with the zigzag edge state on graphite surfaces synthesized by hydrogen-plasma etching. J. Phys. Chem. C 2019, 123, 22665–22673.
Wei, D. C.; Lu, Y. H.; Han, C.; Niu, T. C.; Chen, W.; Wee, A. T. S. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem., Int. Ed. 2013, 52, 14121–14126.
Cai, L.; Yu, G. Fabrication strategies of twisted bilayer graphenes and their unique properties. Adv. Mater. 2021, 33, 2004974.