AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-stage anisotropic etching of two-dimensional heterostructures

Lin Li1Jichen Dong2Dechao Geng3,4( )Menghan Li1Wei Fu5Feng Ding4Wenping Hu4Hui Ying Yang3( )
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, Republic of Korea
Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A* STAR), Singapore 138634, Singapore
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Novel etching mode entitled as multi-stage etching has been demonstrated onto the two-dimensional(2D) heterostructures on liquid Cu surface by chemical vapor deposition method. With aid of themulti-stage etching process, formation of 2D heterostructures arrays with controlled size andmorphology has been realized.

Abstract

Regarding the reverse process of materials growth, etching has been widely concerned to indirectly probe the growth kinetics, offering an avenue in governing the growth of two-dimensional (2D) materials. In this work, interface-driven anisotropic etching mode is demonstrated for the first time to be generally applied to 2D heterostructures. It is shown that the typical in-plane graphene and hexagonal boron nitride (h-BN) heterostructures follow a multi-stage etching behavior initiated first along the interfacial region between the two materials and then along edges of neighboring h-BN flakes and finally along central edges of h-BN. By accurately tuning etching conditions in the chemical vapor deposition process, series of etched 2D heterostructure patterns are controllably produced. Furthermore, scaled formation of graphene and h-BN heterostructures arrays has been realized with full assist of as-proposed etching mechanism, offering a direct top-down method to make 2D orientated heterostructures with order and complexity. Detection of interface-driven multi-staged anisotropic etching mode will shed light on understanding growth mechanism and further expanding wide applications of 2D heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2022_4193_MOESM1_ESM.pdf (1 MB)

References

1

Munkhbat, B.; Yankovich, A. B.; Baranov, D. G.; Verre, R.; Olsson, E.; Shegai, T. O. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 2020, 11, 4604.

2

Jessen, B. S.; Gammelgaard, L.; Thomsen, M. R.; Mackenzie, D. M. A.; Thomsen, J. D.; Caridad, J. M.; Duegaard, E.; Watanabe, K.; Taniguchi, T.; Booth, T. J. et al. Lithographic band structure engineering of graphene. Nat. Nanotechnol. 2019, 14, 340–346.

3

Geng, D. C.; Wang, H. P.; Wan, Y.; Xu, Z. P.; Luo, B. R.; Xu, J.; Yu, G. Direct top-down fabrication of large-area graphene arrays by an in situ etching method. Adv. Mater. 2015, 27, 4195–4199.

4

Ma, T.; Ren, W. C.; Liu, Z. B.; Huang, L.; Ma, L. P.; Ma, X. L.; Zhang, Z. Y.; Peng, L. M.; Cheng, H. M. Repeated growth-etching-regrowth for large-area defect-free single-crystal graphene by chemical vapor deposition. ACS Nano 2014, 8, 12806–12813.

5

Grau-Carbonell, A.; Sadighikia, S.; Welling, T. A. J.; Van Dijk-Moes, R. J. A.; Kotni, R.; Bransen, M.; Van Blaaderen, A.; Van Huis, M. A. In situ study of the wet chemical etching of SiO2 and nanoparticle@SiO2 core–shell nanospheres. ACS Appl. Nano Mater. 2021, 4, 1136–1148.

6

Luo, B. R.; Gao, E. L.; Geng, D. C.; Wang, H. P.; Xu, Z. P.; Yu, G. Etching-controlled growth of graphene by chemical vapor deposition. Chem. Mater. 2017, 29, 1022–1027.

7

Zhang, Y.; Li, Z.; Kim, P.; Zhang, L. Y.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.

8

Geng, D. C.; Wu, B.; Guo, Y. L.; Luo, B. R.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Fractal etching of graphene. J. Am. Chem. Soc. 2013, 135, 6431–6434.

9

Sun, H. B.; Dong, J. C.; Liu, F. N.; Ding, F. Etching of two-dimensional materials. Mater. Today 2021, 42, 192–213.

10

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

11

Paul, K. K.; Kim, J. H.; Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 2021, 3, 178–192.

12

Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

13

Ma, B. J.; Ren, S. Z.; Wang, P. Q.; Jia, C. C.; Guo, X. F. Precise control of graphene etching by remote hydrogen plasma. Nano Res. 2019, 12, 137–142.

14

Wang, L. F.; Wu, B.; Jiang, L. L.; Chen, J. S.; Li, Y. T.; Guo, W.; Hu, P. A.; Liu, Y. Q. Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 2015, 27, 4858–4864.

15

Stehle, Y. Y.; Sang, X. H.; Unocic, R. R.; Voylov, D.; Jackson, R. K.; Smirnov, S.; Vlassiouk, I. Anisotropic etching of hexagonal boron nitride and graphene: Question of edge terminations. Nano Lett. 2017, 17, 7306–7314.

16

Geng, D. C.; Dong, J. C.; Ang, L. K.; Ding, F.; Yang, H. Y. In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains. NPG Asia Mater. 2019, 11, 56.

17

Guo, W.; Jing, F.; Xiao, J.; Zhou, C.; Lin, Y. W.; Wang, S. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv. Mater. 2016, 28, 3152–3158.

18

Li, X. F.; Dong, J. C.; Idrobo, J. C.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K. Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc. 2017, 139, 482–491.

19

Zhao, Z. J.; Chen, X. P.; Zhang, C. K.; Wan, W.; Shan, Z. F.; Tian, B.; Li, Q. Y.; Ying, H.; Zhuang, P. P.; Kaner, R. B. et al. An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket. Carbon 2016, 106, 279–283.

20

Wang, Z. J.; Dong, J. C.; Li, L. F.; Dong, G. C.; Cui, Y.; Yang, Y.; Wei, W.; Blume, R.; Li, Q.; Wang, L. et al. The coalescence behavior of two-dimensional materials revealed by multiscale in situ imaging during chemical vapor deposition growth. ACS Nano 2020, 14, 1902–1918.

21

Wang, G. L.; Wu, S.; Zhang, T. T.; Chen, P.; Lu, X. B.; Wang, S. P.; Wang, D. M.; Watanabe, K.; Taniguchi, T.; Shi, D. X. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 2016, 109, 053101.

22

Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.

23

Dong, J. C.; Geng, D. C.; Liu, F. N.; Ding, F. Formation of twinned graphene polycrystals. Angew. Chem., Int. Ed. 2019, 58, 7723–7727.

24

Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

25

Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.

26

Chen, X.; Yang, H.; Wu, B.; Wang, L. F.; Fu, Q.; Liu, Y. Q. Epitaxial growth of h-BN on templates of various dimensionalities in h-BN-graphene material systems. Adv. Mater. 2019, 31, 1805582.

27

He, T.; Wang, Z.; Zhong, F.; Fang, H. H.; Wang, P.; Hu, W. D. Etching techniques in 2D materials. Adv. Mater. Technol. 2019, 4, 1900064.

28

Yi, K. Y.; Liu, D. H.; Chen, X. S.; Yang, J.; Wei, D. P.; Liu, Y. Q.; Wei, D. C. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Acc. Chem. Res. 2021, 54, 1011–1022.

29

Chaturvedi, A.; Chen, B.; Zhang, K. K.; He, Q. Y.; Nam, G. H.; You, L.; Lai, Z. C.; Tan, C. L.; Tran, T. H.; Liu, G. G. et al. A universal method for rapid and large-scale growth of layered crystals. SmartMat 2020, 1, e1011.

30

Matsui, T.; Sato, H.; Kita, K.; Amend, A. E. B.; Fukuyama, H. Hexagonal nanopits with the zigzag edge state on graphite surfaces synthesized by hydrogen-plasma etching. J. Phys. Chem. C 2019, 123, 22665–22673.

31

Wei, D. C.; Lu, Y. H.; Han, C.; Niu, T. C.; Chen, W.; Wee, A. T. S. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem., Int. Ed. 2013, 52, 14121–14126.

32

Cai, L.; Yu, G. Fabrication strategies of twisted bilayer graphenes and their unique properties. Adv. Mater. 2021, 33, 2004974.

Nano Research
Pages 4909-4915
Cite this article:
Li L, Dong J, Geng D, et al. Multi-stage anisotropic etching of two-dimensional heterostructures. Nano Research, 2022, 15(6): 4909-4915. https://doi.org/10.1007/s12274-022-4193-x
Topics:

1141

Views

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 14 December 2021
Revised: 17 January 2022
Accepted: 24 January 2022
Published: 01 April 2022
© Tsinghua University Press 2022
Return