AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation

Yoonsok KimTaeyoung KimEun Kyu Kim( )
Department of Physics and Research Institute of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
Show Author Information

Graphical Abstract

Interface modulation of molybdenum disulfide (MoS2) with heterojunction field-effect transistor structure could surprisingly improve electrical performances of the devices.

Abstract

Molybdenum disulfide (MoS2), one of transition metal dichalcogenides, is a promising semiconductor material for electronic or optoelectronic devices due to its favorably electronic properties. However, in metal-oxide semiconductor field-effect transistor (MOSFET) structures using MoS2, electrical performances such as mobility and subthreshold swing are suppressed by the interface trap density between the channel and dielectric layers. Moreover, the electrical stability of such structures is compromised due to interface traps and that can be analyzed such as current hysteresis and transient characteristics. Here, we demonstrate MoS2 heterojunction field-effect transistors (HFET) by applying MoS2/p+-Si heterojunctions and achieve high performance characteristics, including a mobility of 636.19 cm2/(V∙s), a subthreshold swing of 67.4 mV/dec, minimal hysteresis of 0.05 V, and minimized transient characteristics. However, the HFET devices with varying the channel length demonstrated degradation of electrical performance with increasing the overlap area of the channel and dielectric layers. These results regarding MoS2/p+-Si HFETs resulted in the structural optimization of high-performance electronic devices for practical applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4263_MOESM1_ESM.pdf (2 MB)

References

1

Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 2014, 8, 8292–8299.

2

Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Chu, D. P. Electrical rectifying and photosensing property of Schottky diode based on MoS2. ACS Appl. Mater. Interfaces 2018, 10, 24613–24619.

3

Lee, J.; Duong, N. T.; Park, D. Y.; Park, C. H.; Jeong, B. G.; Jeong, M. S. Carrier transport through near-ideal interface for WSe2 van der Waals homojunction diode. Appl. Surf. Sci. 2021, 542, 148499.

4

Song, D. Y.; Chu, D. L.; Lee, S. K.; Pak, S. W.; Kim, E. K. High photoresponsivity from multilayer MoS2/Si heterojunction diodes formed by vertically stacking. J. Appl. Phys. 2017, 122, 124505.

5

Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High Mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

6

Du, J. Y.; Ge, C.; Riahi, H.; Guo, E. J.; He, M.; Wang, C.; Yang, G. Z.; Jin, K. J. Dual-gated MoS2 transistors for synaptic and programmable logic functions. Adv. Electron. Mater. 2020, 6, 1901408.

7

Tang, H. L.; Chiu, M. H.; Tseng, C. C.; Yang, S. H.; Hou, K. J.; Wei, S. Y.; Huang, J. K.; Lin, Y. F.; Lien, C. H.; Li, L. J. Multilayer graphene–WSe2 heterostructures for WSe2 transistors. ACS Nano 2017, 11, 12817–12823.

8

Chu, D.; Lee, Y. H.; Kim, E. K. Selective control of electron and hole tunneling in 2D assembly. Sci. Adv. 2017, 3, e1602726.

9

Kim, T.; Kim, Y.; Kim, E. K. Characteristics of Cl-doped MoS2 field-effect transistors. Sens. Actuators A: Phys. 2020, 312, 112165.

10

Guo, N.; Xiao, L.; Gong, F.; Luo, M.; Wang, F.; Jia, Y.; Chang, H. C.; Liu, J. K.; Li, Q.; Wu, Y. et al. Light-driven WSe2–ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 2020, 7, 1901637.

11

Shin, G. H.; Park, C.; Lee, K. J.; Jin, H. J.; Choi, S. Y. Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 2020, 20, 5741–5748.

12

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Xu, X.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Junction field-effect transistors based on PdSe2/MoS2 heterostructures for photodetectors showing high responsivity and detectivity. Adv. Funct. Mater. 2021, 31, 2106105.

13

Pak, S. W.; Chu, D.; Song, D. Y.; Lee, S. K.; Kim, E. K. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer. Nanotechnology 2017, 28, 475206.

14

Chu, D.; Pak, S. W.; Kim, E. K. Locally gated SnS2/hBN thin film transistors with a broadband photoresponse. Sci. Rep. 2018, 8, 10585.

15

Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

16

Chen, J.; Zhu, J. Q.; Wang, Q. Y.; Wan, J.; Liu, R. Homogeneous 2D MoTe2 CMOS inverters and p–n junctions formed by laser-irradiation-induced p-type doping. Small 2020, 16, 2001428.

17

Lee, H. S.; Choi, K.; Kim, J. S.; Yu, S.; Ko, K. R.; Im, S. Coupling two-dimensional MoTe2 and InGaZnO thin-film materials for hybrid PN junction and CMOS inverters. ACS Appl. Mater. Interfaces 2017, 9, 15592–15598.

18

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

19

De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

20

Zheng, Z. Q.; Zhang, T. M.; Yao, J.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

21

Yoon, J.; Park, W.; Bae, G. Y.; Kim, Y.; Jang, H. S.; Hyun, Y.; Lim, S. K.; Kahng, Y. H.; Hong, W. K.; Lee, B. H. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 9, 3295–3300.

22

Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.

23

Park, S.; Jeong, Y.; Jin, H. J.; Park, J.; Jang, H.; Lee, S.; Huh, W.; Cho, H.; Shin, H. G.; Kim, K. et al. Nonvolatile and neuromorphic memory devices using interfacial traps in two-dimensional WSe2/MoTe2 stack channel. ACS Nano 2020, 14, 12064–12071.

24

Feng, X. W.; Li, Y. D.; Wang, L.; Chen, S.; Yu, Z. G.; Tan, W. C.; Macadam, N.; Hu, G. H.; Huang, L.; Chen, L. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 2019, 5, 1900740.

25

Qiu, D. R.; Lee, D. U.; Lee, K. S.; Pak, S. W.; Kim, E. K. Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Res. 2016, 9, 2319–2326.

26

Pham, T.; Li, G. H.; Bekyarova, E.; Itkis, M. E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205.

27

Park, H.; Han, G.; Lee, S. W.; Lee, H.; Jeong, S. H.; Naqi, M.; AlMutairi, A.; Kim, Y. J.; Lee, J.; Kim, W. J. et al. Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 43490–43497.

28

Wu, Y. C.; Joshi, N.; Zhao, S. L.; Long, H.; Zhou, L. J.; Ma, G.; Peng, B.; Oliveira, O. N. Jr.; Zettl, A.; Lin, L. W. NO2 gas sensors based on CVD tungsten diselenide monolayer. Appl. Surf. Sci. 2020, 529, 147110.

29

Singh, S.; Deb, J.; Sarkar, U.; Sharma, S. MoS2/WO3 nanosheets for detection of ammonia. ACS Appl. Nano Mater 2021, 4, 2594–2605.

30

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

31

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

32

Cho, A. J.; Yang, S.; Park, K.; Namgung, S. D.; Kim, H.; Kwon, J. Y. Multi-layer MoS2 FET with small hysteresis by using atomic layer deposition Al2O3 as gate insulator. ECS Solid State Lett. 2014, 3, Q67–Q69.

33

Pan, Y.; Jia, K. P.; Huang, K. L.; Wu, Z. H.; Bai, G. B.; Yu, J. H.; Zhang, Z. H.; Zhang, Q. Z.; Yin, H. X. Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 2019, 30, 095202.

34

Li, T.; Wan, B. S.; Du, G.; Zhang, B. S.; Zeng, Z. M. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates. AIP Adv. 2015, 5, 057102.

35

Song, X. J.; Xu, J. P.; Liu, L.; Lai, P. T.; Tang, W. M. Improved interfacial and electrical properties of few-layered MoS2 FETs with plasma-treated Al2O3 as gate dielectric. Appl. Surf. Sci. 2019, 481, 1028–1034.

36

Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A: Physicochem. Eng. Asp. 2000, 173, 1–38.

37

Guo, Y.; Wei, X. L.; Shu, J. P.; Liu, B.; Yin, J. B.; Guan, C. R.; Han, Y. X.; Gao, S.; Chen, Q. Charge trapping at the MoS2–SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109.

38

Lee, H. S.; Baik, S. S.; Lee, K.; Min, S. W.; Jeon, P. J.; Kim, J. S.; Choi, K.; Choi, H. J.; Kim, J. H.; Im, S. Metal semiconductor field-effect transistor with MoS2/conducting NiOx van der Waals Schottky interface for intrinsic high mobility and photoswitching speed. ACS Nano 2015, 9, 8312–8320.

39

Guo, J.; Wang, L. Y.; Yu, Y. W.; Wang, P. Q.; Huang, Y.; Duan, X. F. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 2019, 31, 1902962.

40

Shin, H. G.; Yoon, H. S.; Kim, J. S.; Kim, M.; Lim, J. Y.; Yu, S.; Park, J. H.; Yi, Y.; Kim, T.; Jun, S. C. et al. Vertical and in-plane current devices using NbS2/n-MoS2 van der Waals Schottky junction and graphene contact. Nano Lett. 2018, 18, 1937–1945.

41

Lim, J. Y.; Kim, M.; Jeong, Y.; Ko, K. R.; Yu, S.; Shin, H. G.; Moon, J. Y.; Choi, Y, J.; Yi, Y.; Kim, T. et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater. Appl. 2018, 2, 37.

42

Kim, T.; Fan, S. D.; Lee, S.; Joo, M. K.; Lee, Y. H. High-mobility junction field-effect transistor via graphene/MoS2 heterointerface. Sci. Rep. 2020, 10, 13101.

43

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

44

Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

45

Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Tavakkoli, K. G. A.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806.

46

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

47

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

48

Liu, N.; Baek, J.; Kim, S. M.; Hong, S.; Hong, Y. K.; Kim, Y. S.; Kim, H. S.; Kim, S.; Park, J. Improving the stability of high-performance multilayer MoS2 field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 42943–42950.

49

Lee, C.; Rathi, S.; Khan, M. A.; Lim, D.; Kim, Y.; Yun, S. J.; Youn, D. H.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology 2018, 29, 335202.

50

Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.

51

Han, K. H.; Kim, G. S.; Park, J.; Kim, S. G.; Park, J. H.; Yu, H. Y. Reduction of threshold voltage hysteresis of MoS2 transistors with 3-aminopropyltriethoxysilane passivation and its application for improved synaptic behavior. ACS Appl. Mater. Interfaces 2019, 11, 20949–20955.

52

Datye, I. M.; Gabourie, A. J.; English, C. D.; Smithe, K. K. H.; McClellan, C. J.; Wang, N. C.; Pop, E. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 2019, 6, 011004.

53

Doherty, J. L.; Noyce, S. G.; Cheng, Z. H.; Abuzaid, H.; Franklin, A. D. Capping layers to improve the electrical stress stability of MoS2 transistors. ACS Appl. Mater. Interfaces 2020, 12, 35698–35706.

54

Shen, H.; Bu, S. T.; Huang, D. M. Transient characteristics of back-gated multilayer MoS2 and WSe2 channel n-type metal oxide semiconductor field effect transistors: A comparative study. J. Appl. Phys. 2019, 126, 194501.

Nano Research
Pages 6500-6506
Cite this article:
Kim Y, Kim T, Kim EK. High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation. Nano Research, 2022, 15(7): 6500-6506. https://doi.org/10.1007/s12274-022-4263-0
Topics:

842

Views

9

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 19 December 2021
Revised: 04 February 2022
Accepted: 21 February 2022
Published: 30 April 2022
© Tsinghua University Press 2022
Return