AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite

Yang Cao1,§Congzhou Li1,§Jie Deng2,§Tong Tong1Yuchi Qian1Guixiang Zhan1Xu Zhang1Kaiyue He1Huifang Ma1Junran Zhang1( )Jing Zhou2( )Lin Wang1( )
Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 20083, China

§ Yang Cao, Congzhou Li, and Jie Deng contributed equally to this work.

Show Author Information

Graphical Abstract

A new van der Waals heterostructure composed of black phosphorus (BP) and two-dimensional chiral perovskite is constructed, which promotes the electronic and optoelectronic performance of BP and integrates the abilities of linearly and circularly polarized photodetection.

Abstract

Heterogeneous stackings of two-dimensional (2D) semiconductors and halide perovskites have attracted much attention owing to their respective superior optoelectronic properties. Black phosphorus (BP), as a unique 2D member with narrow bandgap, high mobility, and strong anisotropy, has never been combined with 2D layered perovskites. Herein, we construct a new BP-based van der Waals heterostructure combing with 2D chiral hybrid perovskite (i.e., (MBA)2PbI4) for promoting the performance and enriching the functionalities of BP. A series of BP characteristics, including carrier mobility, photoresponsivity, and polarization sensitivity, are synergistically enhanced when interfacing with (MBA)2PbI4. For instance, the photodetector responsivity and photogain of BP in heterostructures are boosted by almost one order of magnitude with respect to BP alone, which is more obvious under excitation above the bandgap of perovskite. This is because the interfacing perovskite provides an inflow of numerous photogenerated carriers to BP, to reinforce the charge carrier transfer, separation, and transport processes. Additionally, the ability of both linearly and circularly polarized photodetection can be integrated into the BP/(MBA)2PbI4 heterostructure. Our work sheds new insight on the heterostructure assembly for promising optoelectronic applications within 2D materials and perovskite families.

Electronic Supplementary Material

Download File(s)
12274_2022_4378_MOESM1_ESM.pdf (308.1 KB)

References

1

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

2

Wang, X. X.; Hu, Y.; Mo, J. B.; Zhang, J. Y.; Wang, Z. Z.; Wei, W.; Li, H. L.; Xu, Y.; Ma, J.; Zhao, J. et al. Arsenene: A potential therapeutic agent for acute promyelocytic leukaemia cells by acting on nuclear proteins. Angew. Chem., Int. Ed. 2020, 59, 5151–5158.

3

Hu, Y.; Liang, J. C.; Xia, Y. R.; Zhao, C.; Jiang, M. H.; Ma, J.; Tie, Z. X.; Jin, Z. 2D arsenene and arsenic materials: Fundamental properties, preparation, and applications. Small 2022, 18, 2104556.

4

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

5

Ke, M.; Nguyen, H. D.; Fan, H.; Li, M.; Wu, H.; Hu, Y. J. Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics. Nano Res. 2020, 13, 1369–1375.

6

Hu, Y.; Qi, Z. H.; Lu, J. Y.; Chen, R. P.; Zou, M. Z.; Chen, T.; Zhang, W. J.; Wang, Y. R.; Xue, X. L.; Ma, J. et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes. Chem. Mater. 2019, 31, 4524–4535.

7

Qi, Z. H.; Hu, Y.; Jin, Z.; Ma, J. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents. Phys. Chem. Chem. Phys. 2019, 21, 12087–12090.

8

Hu, Y.; Wang, X. Z.; Qi, Z. H.; Wan, S. S.; Liang, J. C.; Jia, Q. Q.; Hong, D. C.; Tian, Y. X.; Ma, J.; Tie, Z. X. et al. Wet chemistry vitrification and metal-to-semiconductor transition of 2D gray arsenene nanoflakes. Adv. Funct. Mater. 2021, 31, 2106529.

9

Zong, X. R.; Liao, K.; Zhang, L.; Zhu, C.; Jiang, X. H.; Chen, X. L.; Wang, L. Mid-infrared light-emitting properties and devices based on thin-film black phosphorus. J. Mater. Chem. C 2021, 9, 4418–4424.

10

Mao, N. N.; Zhang, S. S.; Wu, J. X.; Tian, H. H.; Wu, J. X.; Xu, H.; Peng, H. L.; Tong, L. M.; Zhang, J. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 2018, 11, 3154–3163.

11

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

12

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

13

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

14

Deng, N. Q.; Tian, H.; Zhang, J.; Jian, J. M.; Wu, F.; Shen, Y.; Yang, Y.; Ren, T. L. Black phosphorus junctions and their electrical and optoelectronic applications. J. Semicond. 2021, 42, 081001.

15

Xia, Z. H.; Li, P. F.; Liu, Y. Q.; Song, T.; Bao, Q. L.; Lee, S. T.; Sun, B. Q. Black phosphorus induced photo-doping for high-performance organic-silicon heterojunction photovoltaics. Nano Res. 2017, 10, 3848–3856.

16

Hu, T.; Hong, J. S. Anisotropic effective mass, optical property, and enhanced band gap in BN/phosphorene/BN heterostructures. ACS Appl. Mater. Interfaces 2015, 7, 23489–23495.

17

Li, X. F.; Xiong, X.; Wu, Y. Q. Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices. Chin. Phys. B 2017, 26, 037307.

18

Cao, Y.; Mishchenko, A.; Yu, G. L.; Khestanova, E.; Rooney, A. P.; Prestat, E. ; Kretinin, A. V.; Blake, P.; Shalom, M. B.; Woods, C. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015, 15, 4914–4921.

19

Chen, Y. X.; Xu, D. L.; Xu, K. K.; Zhang, N.; Liu, S. Y.; Zhao, J. M.; Luo, Q.; Snyman, L. W.; Swart, J. W. Optoelectronic properties analysis of silicon light-emitting diode monolithically integrated in standard CMOS IC. Chin. Phys. B 2019, 28, 107801.

20

Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105.

21

Huang, L.; Huo, N. J.; Li, Y.; Chen, H.; Yang, J. H.; Wei, Z. M.; Li, J. B.; Li, S. S. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p–n heterostructure. J. Phys. Chem. Lett. 2015, 6, 2483–2488.

22

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

23

Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv. Mater. Interfaces 2018, 5, 1800671.

24

Srivastava, P. K.; Hassan, Y.; Gebredingle, Y.; Jung, J.; Kang, B.; Yoo, W. J.; Singh, B.; Lee, C. Van der Waals broken-gap p–n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8266–8275.

25

Leng, K.; Fu, W.; Liu, Y. P.; Chhowalla, M.; Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 2020, 5, 482–500.

26
Zhang, J. R. ; Song, X. F. ; Wang, L. ; Huang, W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics. Natl. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwab129.
27

Sun, Y.; Zhang, L.; Wang, N. N.; Zhang, S. T.; Cao, Y.; Miao, Y. F.; Xu, M. M.; Zhang, H.; Li, H.; Yi, C. et al. The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. npj Flex. Electron. 2018, 2, 12.

28

Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L.; Li, L.; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet–visible–near infrared (UV–Vis–NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.

29

Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.

30

Liu, B.; Long, M. Q.; Cai, M. Q.; Yang, J. L. Interface engineering of CsPbI3-black phosphorus van der Waals heterostructure. Appl. Phys. Lett. 2018, 112, 043901.

31

Liu, B.; Long, M. Q.; Cai, M. Q.; Yang, J. L. Two-dimensional van der Waals heterostructures constructed via perovskite (C4H9NH3)2XBr4 and black phosphorus. J. Phys. Chem. Lett. 2018, 9, 4822–4827.

32

Zhao, Y. Q.; Xu, Y.; Zou, D. F.; Wang, J. N.; Xie, G. F.; Liu, B.; Cai, M. Q.; Jiang, S. L. First-principles study on photovoltaic properties of 2D Cs2PbI4-black phosphorus heterojunctions. J. Phys.: Condens. Matter 2020, 32, 195501.

33

Wang, L. M.; Zou, X. M.; Lin, J.; Jiang, J. Y.; Liu, Y.; Liu, X. Q.; Zhao, X.; Liu, Y. F.; Ho, J. C.; Liao, L. Perovskite/black phosphorus/MoS2 photogate reversed photodiodes with ultrahigh light on/off ratio and fast response. ACS Nano 2019, 13, 4804–4813.

34

Zou, X. M.; Li, Y. Z.; Tang, G. Q.; You, P.; Yan, F. Schottky barrier-controlled black phosphorus/perovskite phototransistors with ultrahigh sensitivity and fast response. Small 2019, 15, 1901004.

35

Chen, K. Q.; Wang, Y. W.; Liu, J. F.; Kang, J. L.; Ge, Y. Q.; Huang, W. C.; Lin, Z. T.; Guo, Z. N.; Zhang, Y. P.; Zhang, H. In situ preparation of a CsPbBr3/black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale 2019, 11, 16852–16859.

36

Ma, J. Q.; Fang, C.; Chen, C.; Jin, L.; Wang, J. Q.; Wang, S.; Tang, J.; Li, D. H. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 2019, 13, 3659–3665.

37

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

38

Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259.

39

Tong, T.; Chen, Y. F.; Qin, S. C.; Li, W. S.; Zhang, J. R.; Zhu, C. H.; Zhang, C. C.; Yuan, X.; Chen, X. Q.; Nie, Z. H. et al. Sensitive and ultrabroadband phototransistor based on two-dimensional Bi2O2Se nanosheets. Adv. Funct. Mater. 2019, 29, 1905806.

40

Shao, D. L.; Gao, J.; Chow, P.; Sun, H. T.; Xin, G. Q.; Sharma, P.; Lian, J.; Koratkar, N. A.; Sawyer, S. Organic–inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Lett. 2015, 15, 3787–3792.

41

Zhao, S. W.; Wu, J. C.; Jin, K.; Ding, H. Y.; Li, T. S.; Wu, C. Z.; Pan, N.; Wang, X. P. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p–n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

42

Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene–black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145.

43

Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.

44

Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

45

Xu, K. K. Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 2021, 31, 054001.

46

Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

47
Guo, Z. N. ; Cao, R. ; Wang, H. D. ; Zhang, X. ; Meng, F. X. ; Chen, X. ; Gao, S. Y. ; Sang, D. K. ; Nguyen, T. H. ; Duong, A. T. et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwab098.
Nano Research
Pages 7492-7497
Cite this article:
Cao Y, Li C, Deng J, et al. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite. Nano Research, 2022, 15(8): 7492-7497. https://doi.org/10.1007/s12274-022-4378-3
Topics:

998

Views

16

Crossref

17

Web of Science

17

Scopus

3

CSCD

Altmetrics

Received: 07 March 2022
Revised: 25 March 2022
Accepted: 29 March 2022
Published: 04 June 2022
© Tsinghua University Press 2022
Return