AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods

Ping Niu1,3,§Yang Yang2,§Zhiqiang Li1,3Gaohui Ding1,3Lingzhi Wei1,3Ge Yao1,3Helin Niu3Yulin Min4( )Fangcai Zheng1,3( )Qianwang Chen1,2
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China
Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China

§ Ping Niu and Yang Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Herein, hollow carbon nanorods were rationally designed as a case to verify the superiority of one-dimensional (1D) hollow structure to improve the diffusion kinetics of K+. Simultaneously, edge-N (pyridinic-N and pyrrolic-N) atoms were also introduced into 1D hollow carbon structure, which can provide ample active sites and defects in graphitic lattices to adsorb K+, providing extra capacitive storage capacity.

Abstract

The high electrical conductivity makes it possible for one-dimensional (1D) carbon materials to be used as the promising anodes for potassium ion batteries (PIBs), however, the sluggish diffusion kinetics caused by large-sized potassium ions (K+) limits their practical applications in energy storage systems. In this work, hollow carbon nanorods were rationally designed as a case to verify the superiority of 1D hollow structure to improve the diffusion kinetics of K+. Simultaneously, edge-N (pyridinic-N and pyrrolic-N) atoms were also introduced into 1D hollow carbon structure, which can provide ample active sites and defects in graphitic lattices to adsorb K+, providing extra capacitive storage capacity. As expected, the optimized edge-N doped hollow carbon nanorods (ENHCRs) exhibits a high reversible capacity of 544 mAh·g−1 at 0.1 A·g−1 after 200 cycles. Even at 5 A·g−1, it displays a long-term cycling stability with 255 mAh·g−1 over 10,000 cycles. The electrochemical measurements confirm that the hollow structure is favorable to improve the transfer kinetics of K+ during cycling. And the theoretical calculations demonstrate that edge-N doping can enhance the local electronegativity of graphitic lattices to adsorb much more K+, where edge-N doping synergizes with 1D hollow structure to achieve enhanced K+-storage performances.

Electronic Supplementary Material

Download File(s)
12274_2022_4496_MOESM1_ESM.pdf (4.1 MB)

References

1

Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3–CoIn2–CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.

2

Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. G. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

3

Zhou, L.; Cao, Z.; Wahyudi, W.; Zhang, J.; Hwang, J. Y.; Cheng, Y.; Wang, L. M.; Cavallo, L.; Anthopoulos, T.; Sun, Y. K. et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett. 2020, 5, 766–776.

4

Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

5

Wu, Y. M.; Zhao, H. T.; Wu, Z. G.; Yue, L. C.; Liang, J.; Liu, Q.; Luo, Y. L.; Gao, S. Y.; Lu, S. Y.; Chen, G. et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 34, 483–507.

6

Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

7

Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020, 14, 1018–1026.

8

Wu, J.; Zhang, X. X.; Li, Z.; Yang, C. F.; Zhong, W. D.; Li, W. L.; Zhang, C. Z.; Yang, N. J.; Zhang, Q.; Li, X. K. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure. Adv. Funct. Mater. 2020, 30, 2004348.

9

Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core–shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.

10

Adams, R. A.; Varma, A.; Pol, V. G. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 2019, 9, 1900550.

11

Wang, G.; Yu, M. H.; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.

12

Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

13

Xiao, L. F.; Lu, H. Y.; Fang, Y. J.; Sushko, M. L.; Cao, Y. L.; Ai, X. P.; Yang, H. X.; Liu, J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018, 8, 1703238.

14

Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 2019, 29, 1906126.

15

Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

16

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

17

Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

18

Xiao, Q. H. Q.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Ren, P. F.; Dong, Y.; Feng, M.; Chen, Z. W. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries. J. Energy Chem. 2020, 44, 61–67.

19

Wang, J. M.; Wang, B. B.; Liu, X. J.; Bai, J. T.; Wang, H.; Wang, G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 2020, 382, 123050.

20

Liu, C.; Xiao, N.; Li, H. J.; Dong, Q.; Wang, Y. W.; Li, H. Q.; Wang, S. F.; Zhang, X. Y.; Qiu, J. S. Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 2020, 382, 121759.

21

Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.

22

Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578–14583.

23

Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

24

Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

25

Yuan, Y.; Chen, Z. W.; Yu, H. X.; Zhang, X. K.; Liu, T. T.; Xia, M. T.; Zheng, R. T.; Shui, M.; Shu, J. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 2020, 32, 65–90.

26

Chu, K. N.; Zhang, X. J.; Yang, Y.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Zheng, F. C.; Chen, Q. W. Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon 2021, 184, 277–286.

27

Hong, W. W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J. G.; Wei, W. F.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 2019, 65, 104038.

28

Gong, J.; Zhao, G. Q.; Feng, J. K.; An, Y. L.; Li, T. T.; Zhang, L.; Li, B.; Qian, Z. Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 2020, 14, 14057–14069.

29

Chen, L.; Bai, L. L.; Yeo, J.; Wei, T.; Chen, W. S.; Fan, Z. J. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage. ACS Appl. Mater. Interfaces 2020, 12, 27499–27507.

30

Thambiliyagodage, C. J.; Ulrich, S.; Araujo, P. T.; Bakker, M. G. Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 2018, 134, 452–463.

31

Iwase, K.; Ebner, K.; Diercks, J. S.; Saveleva, V. A.; Ünsal, S.; Krumeich, F.; Harada, T.; Honma, I.; Nakanishi, S.; Kamiya, K. et al. Effect of cobalt speciation and the graphitization of the carbon matrix on the CO2 electroreduction activity of Co/N-doped carbon materials. ACS Appl. Mater. Interfaces 2021, 13, 15122–15131.

32

Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

33

Li, J.; Yu, L.; Li, Y. P.; Wang, G. R.; Zhao, L. P.; Peng, B.; Zeng, S. Y.; Shi, L.; Zhang, G. Q. Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale 2021, 13, 692–699.

34

Wu, H.; Lu, S. Y.; Xu, S. Y.; Zhao, J.; Wang, Y. K.; Huang, C.; Abdelkader, A.; Wang, W. A.; Xi, K.; Guo, Y. Z. et al. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 2021, 15, 2506–2519.

35
Li Q. Zhang Y. N. Feng S. Liu D. Wang G. X. Tan Q. L. Jiang S. T. Yuan J. J. N, S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries Int. J. Energy Res. 2021 45 7082 7092 10.1002/er.6294

Li, Q.; Zhang, Y. N.; Feng, S.; Liu, D.; Wang, G. X.; Tan, Q. L.; Jiang, S. T.; Yuan, J. J. N, S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries. Int. J. Energy Res. 2021, 45, 7082–7092.

36

Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

37

Wang, B.; Yuan, F.; Yu, Q. Y.; Li, W.; Sun, H. L.; Zhang, L. P.; Zhang, D.; Wang, Q. J.; Lai, F. L.; Wang, W. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021, 38, 329–337.

38

Park, S.; Jin, H. J.; Yun, Y. S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries. ACS Sustainable Chem. Eng. 2020, 8, 17697–17706.

39
Yang S. H. Park S. K. Kang Y. C. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries Nano-Micro Lett. 2021 13 9 10.1007/s40820-020-00539-6

Yang, S. H.; Park, S. K.; Kang, Y. C. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 2021, 13, 9.

40

Yang, S. H.; Park, S. K.; Kang, Y. C. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 2019, 370, 1008–1018.

41

He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

42

Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

43

Chen, Y. X.; Shi, L. L.; Guo, S. S.; Yuan, Q.; Chen, X. H.; Zhou, J. S.; Song, H. H. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. J. Mater. Chem. A 2017, 5, 19866–19874.

44

Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

45

Xu, Y.; Wang, C. L.; Niu, P.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Zheng, F. C.; Chen, Q. W. Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J. Mater. Chem. A 2021, 9, 16150–16159.

46

Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

47

Chen, J. G.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

48

Lai, C. L.; Zhang, Z. Z.; Xu, Y. F.; Liao, J. Y.; Xu, Z. H.; Yi, Z. Y.; Xu, J. Y.; Bao, J. C.; Zhou, X. S. A general strategy for embedding ultrasmall CoMx nanocrystals (M = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 2021, 9, 1487–1494.

49

Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 2018, 28, 1802684.

50

Li, J. W.; Hu, X.; Zhong, G. B.; Liu, Y. J.; Ji, Y. X.; Chen, J. X.; Wen, Z. H. A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 131.

51

Ma, X. Q.; Xiao, N.; Xiao, J.; Song, X. D.; Guo, H. D.; Wang, Y. T.; Zhao, S. J.; Zhong, Y. P.; Qiu, J. S. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 2021, 179, 33–41.

52

Qian, Y.; Li, Y.; Pan, Z.; Tian, J.; Lin, N.; Qian, Y. T. Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3D porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2103115.

53

Ruan, J. F.; Wu, X.; Wang, Y.; Zheng, S. Y.; Sun, D. L.; Song, Y.; Chen, M. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 2019, 7, 19305–19315.

54

Tan, H.; Du, X. Q.; Zhou, R.; Hou, Z.; Zhang, B. Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 2021, 176, 383–389.

55

Tong, H. G.; Wang, C. L.; Lu, J.; Chen, S.; Yang, K.; Huang, M. X.; Yuan, Q.; Chen, Q. W. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020, 16, 2002771.

56

Xu, Y.; Ruan, J. F.; Pang, Y. P.; Sun, H.; Liang, C.; Li, H. W.; Yang, J. H.; Zheng, S. Y. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 14.

57
Yang B. J. Chen J. T. Liu L. Y. Ma P. J. Liu B. Lang J. W. Tang Y. Yan X. B. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor Energy Storage Mater 2019 23 522 529 10.1016/j.ensm.2019.04.008

Yang, B. J.; Chen, J. T.; Liu, L. Y.; Ma, P. J.; Liu, B.; Lang, J. W.; Tang, Y.; Yan, X. B. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater 2019, 23, 522–529.

58

Chen, J. M.; Cheng, Y.; Zhang, Q. B.; Luo, C.; Li, H. Y.; Wu, Y.; Zhang, H. H.; Wang, X.; Liu, H. D.; He, X. et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus Co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 2021, 31, 2007158.

59

Jiang, Y.; Yang, Y.; Xu, R.; Cheng, X. L.; Huang, H. J.; Shi, P. C.; Yao, Y.; Yang, H.; Li, D. J.; Zhou, X. F. et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 2021, 15, 10217–10227.

60

Zhang, M.; Shoaib, M.; Fei, H. L.; Wang, T.; Zhong, J.; Fan, L.; Wang, L.; Luo, H. Y.; Tan, S.; Wang, Y. Y. et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.

61

Li, X. C.; Wang, H. L.; Zhang, W. Z.; Wei, W. R.; Liao, R. X.; Shi, J.; Huang, M. H.; Liu, S.; Shi, Z. C. High potassium ion storage capacity with long cycling stability of sustainable oxygen-rich carbon nanosheets. Nanoscale 2021, 13, 2389–2398.

62

Zhang, Y. L.; Zhao, R.; Li, Y. Q.; Zhu, X. X.; Zhang, B.; Lang, X. Y.; Zhao, L. J.; Jin, B.; Zhu, Y. F.; Jiang, Q. Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. J. Power Sources 2021, 481, 228644.

63

Zhao, R. Z.; Di, H. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257.

64

Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

65

Liu, Y. Z.; Yang, C. H.; Pan, Q. C.; Li, Y. P.; Wang, G.; Ou, X.; Zheng, F. H.; Xiong, X. H.; Liu, M. L.; Zhang, Q. Y. Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 2018, 6, 15162–15169.

66

Xu, S. K.; Cai, L.; Niu, P.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Wang, C. L.; Zheng, F. C.; Chen, Q. W. The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon 2021, 178, 256–264.

67

Shao, M. J.; Li, C. X.; Li, T.; Zhao, H.; Yu, W. Q.; Wang, R. T.; Zhang, J.; Yin, L. W. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. 2020, 30, 2006561.

68

Geng, S. T.; Zhou, T.; Jia, M. Y.; Shen, X. Y.; Gao, P. B.; Tian, S.; Zhou, P. F.; Liu, B.; Zhou, J.; Zhuo, S. P. et al. Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ. Sci. 2021, 14, 3184–3193.

69

Dong, S. Y.; Li, Z. F.; Xing, Z. Y.; Wu, X. Y.; Ji, X. L.; Zhang, X. G. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 2018, 10, 15542–15547.

70

Fan, L.; Lin, K. R.; Wang, J.; Ma, R. F.; Lu, B. G. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, 1800804.

71

Comte, A. L.; Reynier, Y.; Vincens, C.; Leys, C.; Azaïs, P. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 2017, 363, 34–43.

72

Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.

73

Wang, Y. X.; Zhang, Z. Y.; Wang, G. X.; Yang, X. Y.; Sui, Y. M.; Du, F.; Zou, B. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4, 1394–1401.

74

Yu, L.; Wang, G. R.; Gao, J. Y.; Li, J.; Peng, B.; Zhang, G. Q. Sacrificial nanowire catalyzed polymerization process generates hierarchical MoSe2 grafted carbonaceous nanotubes for superior potassium ion storage. ACS Appl. Energy Mater. 2021, 4, 6757–6767.

Nano Research
Pages 8109-8117
Cite this article:
Niu P, Yang Y, Li Z, et al. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Research, 2022, 15(9): 8109-8117. https://doi.org/10.1007/s12274-022-4496-y
Topics:

963

Views

29

Crossref

32

Web of Science

30

Scopus

2

CSCD

Altmetrics

Received: 16 February 2022
Revised: 12 April 2022
Accepted: 03 May 2022
Published: 25 June 2022
© Tsinghua University Press 2022
Return