Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The high electrical conductivity makes it possible for one-dimensional (1D) carbon materials to be used as the promising anodes for potassium ion batteries (PIBs), however, the sluggish diffusion kinetics caused by large-sized potassium ions (K+) limits their practical applications in energy storage systems. In this work, hollow carbon nanorods were rationally designed as a case to verify the superiority of 1D hollow structure to improve the diffusion kinetics of K+. Simultaneously, edge-N (pyridinic-N and pyrrolic-N) atoms were also introduced into 1D hollow carbon structure, which can provide ample active sites and defects in graphitic lattices to adsorb K+, providing extra capacitive storage capacity. As expected, the optimized edge-N doped hollow carbon nanorods (ENHCRs) exhibits a high reversible capacity of 544 mAh·g−1 at 0.1 A·g−1 after 200 cycles. Even at 5 A·g−1, it displays a long-term cycling stability with 255 mAh·g−1 over 10,000 cycles. The electrochemical measurements confirm that the hollow structure is favorable to improve the transfer kinetics of K+ during cycling. And the theoretical calculations demonstrate that edge-N doping can enhance the local electronegativity of graphitic lattices to adsorb much more K+, where edge-N doping synergizes with 1D hollow structure to achieve enhanced K+-storage performances.
Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3–CoIn2–CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.
Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. G. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
Zhou, L.; Cao, Z.; Wahyudi, W.; Zhang, J.; Hwang, J. Y.; Cheng, Y.; Wang, L. M.; Cavallo, L.; Anthopoulos, T.; Sun, Y. K. et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett. 2020, 5, 766–776.
Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.
Wu, Y. M.; Zhao, H. T.; Wu, Z. G.; Yue, L. C.; Liang, J.; Liu, Q.; Luo, Y. L.; Gao, S. Y.; Lu, S. Y.; Chen, G. et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 34, 483–507.
Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.
Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020, 14, 1018–1026.
Wu, J.; Zhang, X. X.; Li, Z.; Yang, C. F.; Zhong, W. D.; Li, W. L.; Zhang, C. Z.; Yang, N. J.; Zhang, Q.; Li, X. K. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure. Adv. Funct. Mater. 2020, 30, 2004348.
Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core–shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.
Adams, R. A.; Varma, A.; Pol, V. G. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 2019, 9, 1900550.
Wang, G.; Yu, M. H.; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.
Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.
Xiao, L. F.; Lu, H. Y.; Fang, Y. J.; Sushko, M. L.; Cao, Y. L.; Ai, X. P.; Yang, H. X.; Liu, J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018, 8, 1703238.
Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 2019, 29, 1906126.
Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.
Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.
Xiao, Q. H. Q.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Ren, P. F.; Dong, Y.; Feng, M.; Chen, Z. W. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries. J. Energy Chem. 2020, 44, 61–67.
Wang, J. M.; Wang, B. B.; Liu, X. J.; Bai, J. T.; Wang, H.; Wang, G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 2020, 382, 123050.
Liu, C.; Xiao, N.; Li, H. J.; Dong, Q.; Wang, Y. W.; Li, H. Q.; Wang, S. F.; Zhang, X. Y.; Qiu, J. S. Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 2020, 382, 121759.
Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.
Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578–14583.
Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.
Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.
Yuan, Y.; Chen, Z. W.; Yu, H. X.; Zhang, X. K.; Liu, T. T.; Xia, M. T.; Zheng, R. T.; Shui, M.; Shu, J. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 2020, 32, 65–90.
Chu, K. N.; Zhang, X. J.; Yang, Y.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Zheng, F. C.; Chen, Q. W. Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon 2021, 184, 277–286.
Hong, W. W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J. G.; Wei, W. F.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 2019, 65, 104038.
Gong, J.; Zhao, G. Q.; Feng, J. K.; An, Y. L.; Li, T. T.; Zhang, L.; Li, B.; Qian, Z. Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 2020, 14, 14057–14069.
Chen, L.; Bai, L. L.; Yeo, J.; Wei, T.; Chen, W. S.; Fan, Z. J. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage. ACS Appl. Mater. Interfaces 2020, 12, 27499–27507.
Thambiliyagodage, C. J.; Ulrich, S.; Araujo, P. T.; Bakker, M. G. Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 2018, 134, 452–463.
Iwase, K.; Ebner, K.; Diercks, J. S.; Saveleva, V. A.; Ünsal, S.; Krumeich, F.; Harada, T.; Honma, I.; Nakanishi, S.; Kamiya, K. et al. Effect of cobalt speciation and the graphitization of the carbon matrix on the CO2 electroreduction activity of Co/N-doped carbon materials. ACS Appl. Mater. Interfaces 2021, 13, 15122–15131.
Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.
Li, J.; Yu, L.; Li, Y. P.; Wang, G. R.; Zhao, L. P.; Peng, B.; Zeng, S. Y.; Shi, L.; Zhang, G. Q. Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale 2021, 13, 692–699.
Wu, H.; Lu, S. Y.; Xu, S. Y.; Zhao, J.; Wang, Y. K.; Huang, C.; Abdelkader, A.; Wang, W. A.; Xi, K.; Guo, Y. Z. et al. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 2021, 15, 2506–2519.
Li, Q.; Zhang, Y. N.; Feng, S.; Liu, D.; Wang, G. X.; Tan, Q. L.; Jiang, S. T.; Yuan, J. J. N, S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries.
Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.
Wang, B.; Yuan, F.; Yu, Q. Y.; Li, W.; Sun, H. L.; Zhang, L. P.; Zhang, D.; Wang, Q. J.; Lai, F. L.; Wang, W. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021, 38, 329–337.
Park, S.; Jin, H. J.; Yun, Y. S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries. ACS Sustainable Chem. Eng. 2020, 8, 17697–17706.
Yang, S. H.; Park, S. K.; Kang, Y. C. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries.
Yang, S. H.; Park, S. K.; Kang, Y. C. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 2019, 370, 1008–1018.
He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.
Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.
Chen, Y. X.; Shi, L. L.; Guo, S. S.; Yuan, Q.; Chen, X. H.; Zhou, J. S.; Song, H. H. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. J. Mater. Chem. A 2017, 5, 19866–19874.
Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.
Xu, Y.; Wang, C. L.; Niu, P.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Zheng, F. C.; Chen, Q. W. Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J. Mater. Chem. A 2021, 9, 16150–16159.
Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.
Chen, J. G.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.
Lai, C. L.; Zhang, Z. Z.; Xu, Y. F.; Liao, J. Y.; Xu, Z. H.; Yi, Z. Y.; Xu, J. Y.; Bao, J. C.; Zhou, X. S. A general strategy for embedding ultrasmall CoMx nanocrystals (M = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 2021, 9, 1487–1494.
Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 2018, 28, 1802684.
Li, J. W.; Hu, X.; Zhong, G. B.; Liu, Y. J.; Ji, Y. X.; Chen, J. X.; Wen, Z. H. A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 131.
Ma, X. Q.; Xiao, N.; Xiao, J.; Song, X. D.; Guo, H. D.; Wang, Y. T.; Zhao, S. J.; Zhong, Y. P.; Qiu, J. S. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 2021, 179, 33–41.
Qian, Y.; Li, Y.; Pan, Z.; Tian, J.; Lin, N.; Qian, Y. T. Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3D porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2103115.
Ruan, J. F.; Wu, X.; Wang, Y.; Zheng, S. Y.; Sun, D. L.; Song, Y.; Chen, M. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 2019, 7, 19305–19315.
Tan, H.; Du, X. Q.; Zhou, R.; Hou, Z.; Zhang, B. Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 2021, 176, 383–389.
Tong, H. G.; Wang, C. L.; Lu, J.; Chen, S.; Yang, K.; Huang, M. X.; Yuan, Q.; Chen, Q. W. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020, 16, 2002771.
Xu, Y.; Ruan, J. F.; Pang, Y. P.; Sun, H.; Liang, C.; Li, H. W.; Yang, J. H.; Zheng, S. Y. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 14.
Yang, B. J.; Chen, J. T.; Liu, L. Y.; Ma, P. J.; Liu, B.; Lang, J. W.; Tang, Y.; Yan, X. B. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor.
Chen, J. M.; Cheng, Y.; Zhang, Q. B.; Luo, C.; Li, H. Y.; Wu, Y.; Zhang, H. H.; Wang, X.; Liu, H. D.; He, X. et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus Co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 2021, 31, 2007158.
Jiang, Y.; Yang, Y.; Xu, R.; Cheng, X. L.; Huang, H. J.; Shi, P. C.; Yao, Y.; Yang, H.; Li, D. J.; Zhou, X. F. et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 2021, 15, 10217–10227.
Zhang, M.; Shoaib, M.; Fei, H. L.; Wang, T.; Zhong, J.; Fan, L.; Wang, L.; Luo, H. Y.; Tan, S.; Wang, Y. Y. et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.
Li, X. C.; Wang, H. L.; Zhang, W. Z.; Wei, W. R.; Liao, R. X.; Shi, J.; Huang, M. H.; Liu, S.; Shi, Z. C. High potassium ion storage capacity with long cycling stability of sustainable oxygen-rich carbon nanosheets. Nanoscale 2021, 13, 2389–2398.
Zhang, Y. L.; Zhao, R.; Li, Y. Q.; Zhu, X. X.; Zhang, B.; Lang, X. Y.; Zhao, L. J.; Jin, B.; Zhu, Y. F.; Jiang, Q. Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. J. Power Sources 2021, 481, 228644.
Zhao, R. Z.; Di, H. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257.
Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.
Liu, Y. Z.; Yang, C. H.; Pan, Q. C.; Li, Y. P.; Wang, G.; Ou, X.; Zheng, F. H.; Xiong, X. H.; Liu, M. L.; Zhang, Q. Y. Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 2018, 6, 15162–15169.
Xu, S. K.; Cai, L.; Niu, P.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Wang, C. L.; Zheng, F. C.; Chen, Q. W. The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon 2021, 178, 256–264.
Shao, M. J.; Li, C. X.; Li, T.; Zhao, H.; Yu, W. Q.; Wang, R. T.; Zhang, J.; Yin, L. W. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. 2020, 30, 2006561.
Geng, S. T.; Zhou, T.; Jia, M. Y.; Shen, X. Y.; Gao, P. B.; Tian, S.; Zhou, P. F.; Liu, B.; Zhou, J.; Zhuo, S. P. et al. Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ. Sci. 2021, 14, 3184–3193.
Dong, S. Y.; Li, Z. F.; Xing, Z. Y.; Wu, X. Y.; Ji, X. L.; Zhang, X. G. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 2018, 10, 15542–15547.
Fan, L.; Lin, K. R.; Wang, J.; Ma, R. F.; Lu, B. G. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, 1800804.
Comte, A. L.; Reynier, Y.; Vincens, C.; Leys, C.; Azaïs, P. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 2017, 363, 34–43.
Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.
Wang, Y. X.; Zhang, Z. Y.; Wang, G. X.; Yang, X. Y.; Sui, Y. M.; Du, F.; Zou, B. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4, 1394–1401.
Yu, L.; Wang, G. R.; Gao, J. Y.; Li, J.; Peng, B.; Zhang, G. Q. Sacrificial nanowire catalyzed polymerization process generates hierarchical MoSe2 grafted carbonaceous nanotubes for superior potassium ion storage. ACS Appl. Energy Mater. 2021, 4, 6757–6767.