The high electrical conductivity makes it possible for one-dimensional (1D) carbon materials to be used as the promising anodes for potassium ion batteries (PIBs), however, the sluggish diffusion kinetics caused by large-sized potassium ions (K+) limits their practical applications in energy storage systems. In this work, hollow carbon nanorods were rationally designed as a case to verify the superiority of 1D hollow structure to improve the diffusion kinetics of K+. Simultaneously, edge-N (pyridinic-N and pyrrolic-N) atoms were also introduced into 1D hollow carbon structure, which can provide ample active sites and defects in graphitic lattices to adsorb K+, providing extra capacitive storage capacity. As expected, the optimized edge-N doped hollow carbon nanorods (ENHCRs) exhibits a high reversible capacity of 544 mAh·g−1 at 0.1 A·g−1 after 200 cycles. Even at 5 A·g−1, it displays a long-term cycling stability with 255 mAh·g−1 over 10,000 cycles. The electrochemical measurements confirm that the hollow structure is favorable to improve the transfer kinetics of K+ during cycling. And the theoretical calculations demonstrate that edge-N doping can enhance the local electronegativity of graphitic lattices to adsorb much more K+, where edge-N doping synergizes with 1D hollow structure to achieve enhanced K+-storage performances.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2022, 15(9): 8109-8117
Published: 25 June 2022
Downloads:59
Total 1