AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system

Jiangyong LiuYuping Duan( )Tuo ZhangLingxi HuangHuifang Pang
Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
Show Author Information

Graphical Abstract

The current at both ends of each PIN diode is regulated by switching the different voltages of the intelligent voltage regulator module through infrared binary encoding, so that the active metasurface can be quickly switched between reflection and different absorption states.

Abstract

The reconfigurable metasurfaces which can regulate the microwave absorption performance at the sub wavelength scale provide a possibility to construct intelligent stealth system. However, the existing reconfigurable-metasurface-based absorbers seriously limit the medium and long-distance regulation in practical application due to the complex circuit path and regulation mode. Here, an infrared-coded dual-polarized metasurface absorber (IDMA) with remote-control mode was proposed, which realized the real-time dynamic regulation of the intensity and frequency range of absorption peaks by combining the infrared-coding remote-control technology with the active metasurface absorber. The proposed remote-control system can switch the 8-bit binary coding sequences stored in the microcontroller unit (MCU) by an infrared transceiver, so as to regulate the state of active devices under X- and Y-polarizations, respectively. The experimental results showed that the reflection/absorption responses can be regulated by switching different binary codes, and the reflection loss (RL) can be tuned below −7.5 dB (absorptivity over 82%) in wide range of 6.20–18 GHz. Furthermore, the corresponding equivalent circuit model was established and the distributions of surface current and electric field were analyzed to elucidate the dynamic reconfigurable mechanism of the metasurface absorber. The proposed IDMA, which combines intelligent electronic technology with active metasurface absorber, creatively realizes the remote control of active metasurface absorber and opens up a new way for the stealth technology of smart absorber in the future.

Electronic Supplementary Material

Video
12274_2022_4528_MOESM2_ESM.avi
12274_2022_4528_MOESM3_ESM.avi
12274_2022_4528_MOESM4_ESM.avi
12274_2022_4528_MOESM5_ESM.avi
Download File(s)
12274_2022_4528_MOESM1_ESM.pdf (2 MB)

References

1

Zhang, M.; Cao, M. S.; Shu, J. C.; Cao, W. Q.; Li, L.; Yuan, J. Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R:Rep. 2021, 145, 100627.

2

Zhang, M.; Wang, X. X.; Cao, W. Q.; Yuan, J.; Cao, M. S. Electromagnetic functions of patterned 2D materials for micro-nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 2019, 7, 1900689.

3

Gao, S. T.; Chen, L. W.; Zhang, Y. C.; Shan, J. F. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber. Compos. Sci. Technol. 2021, 213, 108921.

4
Wang, Y. C. ; Yao, L. H. ; Zheng, Q. ; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., in press, DOI: 10.1007/s12274-022-4428-x.
5

Yang, X.; Duan, Y. P.; Li, S. Q.; Pang, H. F.; Huang, L. X.; Fu, Y. Y.; Wang, T. M. Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 2022, 14, 28.

6

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 2022, 15, 4737–4745.

7

Jia, H. Y.; Zhou, W. C.; Nan, H. Y.; Dong, J.; Qing, Y. C.; Luo, F.; Zhu, D. M. Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption. J. Eur. Ceram. Soc. 2020, 40, 728–734.

8

Liu, J.; Duan, Y. P.; Song, L. L.; Hu, J. J.; Zeng, Y. S. Heterogeneous nucleation promoting formation and enhancing microwave absorption properties in hierarchical sandwich-like polyaniline/graphene oxide induced by mechanical agitation. Compos. Sci. Technol. 2019, 182, 107780.

9

Zhao, J.; Zhang, J. L.; Wang, L.; Li, J. K.; Feng, T.; Fan, J. C.; Chen, L. X.; Gu, J. W. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486.

10

Ling, A.; Tan, G. G.; Man, Q. K.; Lou, Y. X.; Chen, S. W.; Gu, X. S.; Li, R. W.; Pan, J.; Liu, X. C. Broadband microwave absorbing materials based on MWCNTs' electromagnetic wave filtering effect. Compos. Part B:Eng. 2019, 171, 214–221.

11

Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

12

Ning, M. Q.; Lei, Z. K.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 2021, 13, 47061–47071.

13

Zhu, W. M.; Wang, L.; Zhao, R.; Ren, J. W.; Lu, G. Z.; Wang, Y. Q. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 2011, 3, 2862–2864.

14

Chen, C.; Chen, W.; Zong, B.; Ding, X. H.; Dong, H. T. The development of a magnetic iron/nitrogen-doped graphitized carbon composite with boosted microwave attenuation ability as the wideband microwave absorber. Nanoscale Adv. 2021, 3, 2343–2350.

15

Mandal, D.; Gorai, A.; Mandal, K. Electromagnetic wave trapping in NiFe2O4 nano-hollow spheres: An efficient microwave absorber. J. Magn. Magn. Mater. 2019, 485, 43–48.

16

Huang, Z. H.; Cheng, J. Y.; Zhang, H. B.; Xiong, Y. F.; Zhou, Z. X.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 2022, 107, 155–164.

17
Zhang, R. X. ; Wang, L. ; Xu, C. Y. ; Liang, C. Y. ; Liu, X. H. ; Zhang, X. F. ; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res., in press, DOI: 10.1007/s12274-022-4401-8.
18
Liu, Y. ; Jia, Z. R. ; Zhan, Q. Q. ; Dong, Y. H. ; Xu, Q. M. ; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res., in press, DOI: 10.1007/s12274-022-4287-5.
19

Fan, D. G.; Wei, B.; Wu, R. X.; Zhou, J. T.; Zhou, C. Y. Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties. J. Mater. Sci. 2021, 56, 6830–6844.

20
Luo, J. H. ; Feng, M. N. ; Dai, Z. Y. ; Jiang, C. Y. ; Yao, W. ; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res., in press, DOI: 10.1007/s12274-022-4411-6.
21

Jia, Y. J.; Chowdhury, M. A. R.; Zhang, D. J.; Xu, C. Y. Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics. ACS Appl. Mater. Interfaces 2019, 11, 45862–45874.

22

He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

23

Zhang, B.; Duan, Y. P.; Zhang, H. F.; Huang, S.; Ma, G. J.; Wang, T. M.; Dong, X. L.; Jia, N. Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys. J. Mater. Sci. Technol. 2021, 68, 124–131.

24

Zhao, J.; Zhang, J. L.; Wang, L.; Lyu, S.; Ye, W. L.; Xu, B. B.; Qiu, H.; Chen, L. X.; Gu, J. W. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos. Part A:Appl. Sci. Manuf. 2020, 129, 105714.

25

Song, L. L.; Duan, Y. P.; Liu, J.; Pang, H. F. Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 2020, 13, 95–104.

26

Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402.

27

Tao, H.; Landy, N. I.; Bingham, C. M.; Zhang, X.; Averitt, R. D.; Padilla, W. J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188.

28

Liu, X. L.; Starr, T.; Starr, A. F.; Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 2010, 104, 207403.

29

Wen, Q. Y.; Zhang, H. W.; Xie, Y. S.; Yang, Q. H.; Liu, Y. L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111.

30

Zhang, T.; Duan, Y. P.; Liu, J. Y.; Huang, L. X.; Pang, H. F. Tailoring the resonances on Fibonacci spiral fractal metasurface for miniaturized multi-band microwave applications. Opt. Commun. 2022, 518, 128353.

31

Shen, X. P.; Yang, Y.; Zang, Y. Z.; Gu, J. Q.; Han, J. G.; Zhang, W. L.; Cui, T. J. Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Appl. Phys. Lett. 2012, 101, 154102.

32

Wang, N.; Tong, J. M.; Zhou, W. C.; Jiang, W.; Li, J. L.; Dong, X. C.; Hu, S. Novel quadruple-band microwave metamaterial absorber. IEEE Photonics J. 2015, 7, 5500506.

33

Cen, C. L.; Yi, Z.; Zhang, G. F.; Zhang, Y. B.; Liang, C. P.; Chen, X. F.; Tang, Y. J.; Ye, X.; Yi, Y. G.; Wang, J. Q. et al. Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results Phys. 2019, 14, 102463.

34

Wen, D. E.; Yang, H. L.; Ye, Q. W.; Li, M. H.; Guo, L. Y.; Zhang, J. F. Broadband metamaterial absorber based on a multi-layer structure. Phys. Scr. 2013, 88, 015402.

35

Li, W. W.; Zhao, L. Y.; Dai, Z. H.; Jin, H.; Duan, F.; Liu, J. C.; Zeng, Z. H.; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Res. 2018, 11, 3931–3942.

36

Cui, Y. X.; Fung, K. H.; Xu, J.; Ma, H.; Jin, Y.; He, S. L.; Fang, N. X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447.

37

Ding, F.; Cui, Y. X.; Ge, X. C.; Jin, Y.; He, S. L. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100, 103506.

38

Zhang, T.; Duan, Y. P.; Huang, L. X.; Pang, H. F.; Liu, J. Y.; Ma, X. R.; Shi, Y. P.; Lei, H. Huygens' metasurface based on induced magnetism: Enhance the microwave absorption performance of magnetic coating. Adv. Mater. Interfaces, 2022, 9, 2102559.

39

Li, J. L.; Jiang, J. J.; He, Y.; Xu, W. H.; Chen, M.; Miao, L.; Bie, S. W. Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 774–777.

40

Kong, P.; Yu, X. W.; Liu, Z. Y.; Zhou, K.; He, Y.; Miao, L.; Jiang, J. J. A novel tunable frequency selective surface absorber with dual-DOF for broadband applications. Opt. Express 2014, 22, 30217–30224.

41

Zhu, B.; Feng, Y. J.; Zhao, J. M.; Huang, C.; Jiang, T. A. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 2010, 97, 051906.

42

Ghosh, S.; Srivastava, K. V. Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range. IEEE Trans. Antennas Propag. 2017, 65, 4903–4908.

43

Ghosh, S.; Srivastava, K. V. Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique. IEEE Trans. Antennas Propag. 2016, 64, 3665–3670.

44

Wang, H.; Kong, P.; Cheng, W. T.; Bao, W. Z.; Yu, X. W.; Miao, L.; Jiang, J. J. Broadband tunability of polarization-insensitive absorber based on frequency selective surface. Sci. Rep. 2016, 6, 23081.

45

He, Y.; Jiang, J. J.; Chen, M.; Li, S. C.; Miao, L.; Bie, S. W. Design of an adjustable polarization-independent and wideband electromagnetic absorber. J. Appl. Phys. 2016, 119, 105103.

46

Hu, N.; Zhang, J. H.; Zha, S.; Liu, C. X.; Liu, H. Q.; Liu, P. G. Design of a multilayer broadband switchable absorber based on semiconductor switch. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 373–377.

47

Shadrivov, I. V.; Kapitanova, P. V.; Maslovski, S. I.; Kivshar, Y. S. Metamaterials controlled with light. Phys. Rev. Lett. 2012, 109, 083902.

48

Zhang, X. G.; Tang, W. X.; Jiang, W. X.; Bai, G. D.; Tang, J.; Bai, L.; Qiu, C. W.; Cui, T. J. Light-controllable digital coding metasurfaces. Adv. Sci. 2018, 5, 1801028.

49

Zhang, X. G.; Jiang, W. X.; Cui, T. J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity. Appl. Phys. Lett. 2018, 113, 091601.

50
Bode, H. W. Network Analysis and Feedback Amplifier Design; Van Nostrand Company: Princeton, 1945.
51

Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V. Montecarlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation. Int. J. Hydrog. Energy 2015, 40, 11279–11293.

52

Van Meirhaeghe, R. L.; Dutoit, E. C.; Cardon, F.; Gomes, W. P. Application of Kramers-Kronig relations to problems concerning frequency-dependence of electrode impedance. Electrochim. Acta 1975, 20, 995–999.

53

Rogacheva, A. V.; Fedotov, V. A.; Schwanecke, A. S.; Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 2006, 97, 177401.

54

Huang, L. X.; Duan, Y. P.; Liu, J.; Zeng, Y. S.; Ma, G. J.; Pang, H. F.; Gao, S. H.; Zhang, W. P. Bioinspired gyrotropic metamaterials with multifarious wave adaptability and multifunctionality. Adv. Opt. Mater. 2020, 8, 2000012.

Nano Research
Pages 7498-7505
Cite this article:
Liu J, Duan Y, Zhang T, et al. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system. Nano Research, 2022, 15(8): 7498-7505. https://doi.org/10.1007/s12274-022-4528-7
Topics:
Part of a topical collection:

1101

Views

34

Crossref

32

Web of Science

34

Scopus

6

CSCD

Altmetrics

Received: 31 March 2022
Revised: 07 May 2022
Accepted: 11 May 2022
Published: 01 June 2022
© Tsinghua University Press 2022
Return