AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ decorating the surface and interlayer of montmorillonite with Co0.5Ni0.5Fe2O4 nanoparticles: A sustainable, biocompatible colorimetric platform for H2O2 and acetylcholine

Xixi Zhu1Hongyu Li1Tao Wu1Hui Zhao1Kaili Wu2Wenjing Xu3Fengjuan Qin3Wenxing Chen3( )Jinlong Zheng2( )Qingyun Liu1( )
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Shunde Graduate School, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

A facile and efficient biosensor for acetylcholine (ACh) was established based on the proxidase-like activity of Co0.5Ni0.5Fe2O4-MMT originated from its catalytic decomposition of H2O2 into ·OH and ·O2.

Abstract

Originated from nature and used for nature is a way of sustainable development. In this work, montmorillonite (MMT), a natural two-dimensional (2D) layered mineral, the surface and interlayer of which were nano-decorated by chemical synthesis technique was applied in biological detection field. Magnetic ferrite (Co0.5Ni0.5Fe2O4) was anchored on the surface and intercalated in the interlayer of montmorillonite, which served as a competitive candidate of enzyme mimics. Cytotoxicity test toward HUVEC and Hela cells verified the good biocompatibility of Co0.5Ni0.5Fe2O4-MMT, guaranteeing its safety in biological applications. Based on the peroxidase-like activity of Co0.5Ni0.5Fe2O4-MMT, a colorimetric sensing platform for H2O2 was established by a facile mix-and-detect approach with the detection limit of 0.565 μM (3σ/slope). It was implied that the peroxidase-like activity of Co0.5Ni0.5Fe2O4-MMT was originated from generation of ·OH and ·O2 produced from catalytic decomposition process of H2O2. Coupled with cascaded catalytic reactions of ACh, a facile and efficient sensing platform for ACh with satisfactory anti-interference ability was established. Thus, all these remarkable features highlighted the superiority of Co0.5Ni0.5Fe2O4-MMT, and endowed it with a powerful competitiveness in the fields of environmental assessing, biosensing, and disease monitoring.

Electronic Supplementary Material

Download File(s)
12274_2022_4594_MOESM1_ESM.pdf (1.7 MB)

References

1

Furchgott, R. F.; Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288, 373–376.

2

Blokland, A. Acetylcholine: A neurotransmitter for learning and memory. Brain Res. Rev. 1995, 21, 285–300.

3

Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006, 16, 710–715.

4

Kong, D. S.; Jin, R.; Zhao, X.; Li, H. X.; Yan, X.; Liu, F. M.; Sun, P.; Gao, Y.; Liang, X. S.; Lin, Y. H. et al. Protein-inorganic hybrid nanoflower-rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Appl. Mater. Interfaces 2019, 11, 11857–11864.

5

Song, P.; Hershey, N. D.; Mabrouk, O. S.; Slaney, T. R.; Kennedy, R. T. Mass spectrometry "sensor" for in vivo acetylcholine monitoring. Anal. Chem. 2012, 84, 4659–4664.

6

Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 2002, 298, 789–791.

7

Fenoy, G. E.; Marmisollé, W. A.; Azzaroni, O.; Knol, W. Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosens. Bioelectron. 2020, 148, 111796.

8

Li, L.; Zhang, Y. H.; Du, P. C.; Qian, Y.; Zhang, P. D.; Guo, Q. J. Polymeric membrane electrodes using calix[4]pyrrole bis/tetra-phosphonate cavitands as ionophores for potentiometric acetylcholine sensing with high selectivity. Anal. Chem. 2020, 92, 14740–14746.

9

Qian, J.; Yang, X. W.; Jiang, L.; Zhu, C. D.; Mao, H. P.; Wang, K. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sens. Actuators B:Chem. 2014, 201, 160–166.

10

Burmeister, J. J.; Pomerleau, F.; Huettl, P.; Gash, C. R.; Werner, C. E.; Bruno, J. P.; Gerhardt, G. A. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens. Bioelectron. 2008, 23, 1382–1389.

11

Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006–16014.

12

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

13

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

14

Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

15

Zhu, X. X.; Xue, Y.; Li, H. Y.; Song, P.; Wu, T.; Zhao, H.; Gao, Y.; Zheng, J. L.; Li, B.; Liu, Q. Y. Porphyrin-modified NiS2 nanoparticles anchored on graphene for the specific determination of cholesterol. ACS Appl. Nano Mater. 2021, 4, 11960–11968.

16

Liu, Q. Y.; Yang, Y. T.; Li, H.; Zhu, R. R.; Shao, Q.; Yang, S. G.; Xu, J. J. NiO nanoparticles modified with 5, 10, 15, 20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 2015, 64, 147–153.

17

Zhu, X. X.; Li, H. Y.; Zhang, D. Q.; Chen, W.; Fu, M.; Nie, S. M.; Gao, Y.; Liu, Q. Y. Novel “on-off” colorimetric sensor for glutathione based on peroxidase activity of montmorillonite-loaded TiO2 functionalized by porphyrin precisely controlled by visible light. ACS Sustainable Chem. Eng. 2019, 7, 18105–18113.

18

Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

19

Badoei-dalfard, A.; Sohrabi, N.; Karami, Z.; Sargazi, G. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/Th-MOF for uric acid sensing in biological samples. Biosens. Bioelectron. 2019, 141, 111420.

20

Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.

21

Cai, N.; Tan, L.; Li, Y.; Xia, T. T.; Hu, T. Y.; Su, X. G. Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal. Chim. Acta 2017, 965, 96–102.

22

Nersisyan, H. H.; Lee, J. H.; Ding, J. R.; Kim, K. S.; Manukyan, K. V.; Mukasyan, A. S. Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives. Prog. Energy Combust. Sci. 2017, 63, 79–118.

23

Lou, C. Q.; Jing, T.; Tian, J. Z.; Zheng, Y. J.; Zhang, J. X.; Dong, M. Y.; Wang, C.; Hou, C. X.; Fan, J. C.; Guo, Z. H. 3-dimensional graphene/Cu/Fe3O4 composites:Immobilized laccase electrodes for detecting bisphenol A. J. Mater. Res. 2019, 34, 2964–2975.

24

Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386–393.

25

Luo, Z. R.; Xie, Y. F.; Li, Z. W.; Wang, Y. J.; Li, L. H.; Luo, Z. Y.; Zhu, C. G.; Yang, X.; Huang, M.; Huang, J. H. et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res. 2022, 15, 3539–3547.

26

Zhao, X.; Wu, K. L.; Lyu, H. Y.; Zhang, X. X.; Liu, Z. X.; Fan, G. C.; Zhang, X.; Zhu, X. X.; Liu, Q. Y. Porphyrin functionalized Co(OH)2/GO nanocomposites as an excellent peroxidase mimic for colorimetric biosensing. Analyst 2019, 144, 5284–5291.

27
LiJ. H.WangL. L.HeH. J.ChenY. Q.GaoZ. R.MaN.WangB.ZhengL. L.LiR. L.WeiY. J. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reactionNano Res.2022154986499510.1007/s12274-022-4144-6

Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

28

Ijagbemi, C. O.; Baek, M. H.; Kim, D. S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 2009, 166, 538–546.

29

Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chem. Eng. J. 2014, 243, 14–23.

30

Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371–380.

31

Qiu, G.; Huang, C. P.; Sun, X. L.; Chen, B. H. Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose. Green Chem. 2019, 21, 3930–3939.

32

Mulewa, W.; Tahir, M.; Amin, N. A. S. MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production. Chem. Eng. J. 2017, 326, 956–969.

33

Bian, L.; Nie, J. N.; Jiang, X. Q, ; Song, M. X.; Dong, F. Q.; Li, W. M.; Shang, L. P.; Deng, H.; He, H. C.; Xu, B. et al. Selective removal of uranyl from aqueous solutions containing a mix of toxic metal ions using core-shell MFe2O4-TiO2 nanoparticles of montmorillonite edge sites. ACS Sustainable Chem. Eng. 2018, 6, 16267–16278.

34
Zhu, X. X. ; Xue, Y. ; Han, S. ; Chen, W. ; Fu, M. ; Gao, Y. ; Nie, S. M. ; Liu, Q. Y. ; Zhang, X. X. ; Zhang, X. V2O5-montmorillonite nanocomposites of peroxidase-like activity and their application in the detection of H2O2 and glutathione. Appl. Clay Sci. 2020, 195, 105718.
35

Fajrina, N.; Tahir, M. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. Appl. Surf. Sci. 2019, 471, 1053–1064.

36

Masteri-Farahani, M., Mosleh, N. CdS quantum dots encapsulated within the mesopores of MCM-41 and interlayers of montmorillonite as photocatalysts for rhodamine-B degradation in aqueous solution. Environ. Sci. Pollut. Res. 2021, 28, 4615–4622.

37

Zhang, L. Y.; Chen, M. X.; Jiang, Y. L.; Chen, M. M.; Ding, Y. N.; Liu, Q. Y. A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens. Actuators B:Chem. 2017, 239, 28–35.

38

Intachai, S.; Suppaso, C.; Klinsrisuk, S.; Khaorapapong, N.; Ogawa, M. The possible doping of Al3+ and F- modification onto CdS in montmorillonite. Colloids Surf. A:Physicochem. Eng. Aspects 2017, 522, 133–139.

39

Gao, Y.; Wu, K. L.; Li, H. Y.; Chen, W.; Fu, M.; Yue, K.; Zhu, X. X.; Liu, Q. Y. Glutathione detection based on peroxidase-like activity of Co3O4-Montmorillonite nanocomposites. Sens. Actuators B:Chem. 2018, 273, 1635–1639.

40

Liu, H. X.; Lu, X. Y.; Hu, Y.; Chen, R. P.; Zhao, P. Y.; Wang, L.; Zhu, G. Y.; Ma, L. B.; Jin, Z. CoxFeyN nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 12489–12497.

41

Liu, Y. J.; Xie, X. L.; Zhu, G. X.; Mao, Y.; Yu, Y. N.; Ju, S. X.; Shen, X. P.; Pang, H. Small sized Fe-Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 2019, 7, 15851–15861.

42

Zhou, K. L.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Zhang, Y. Z. Crystal phase tuning and valence engineering in non-noble catalysts for outstanding overall water splitting. J. Mater. Chem. A 2020, 8, 4524–4532.

Nano Research
Pages 9319-9326
Cite this article:
Zhu X, Li H, Wu T, et al. In situ decorating the surface and interlayer of montmorillonite with Co0.5Ni0.5Fe2O4 nanoparticles: A sustainable, biocompatible colorimetric platform for H2O2 and acetylcholine. Nano Research, 2022, 15(10): 9319-9326. https://doi.org/10.1007/s12274-022-4594-x
Topics:

996

Views

40

Crossref

38

Web of Science

41

Scopus

0

CSCD

Altmetrics

Received: 29 March 2022
Revised: 17 May 2022
Accepted: 28 May 2022
Published: 24 June 2022
© Tsinghua University Press 2022
Return