AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit

Zhe Sheng1Yue Wang1Wennan Hu1Haoran Sun1Jianguo Dong1Rui Yu1David Wei Zhang1,2Peng Zhou1,2( )Zengxing Zhang1,2( )
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
National Integrated Circuit Innovation Center, Shanghai 201203, China
Show Author Information

Graphical Abstract

Based on complementary back-to-back BP/h-BN/graphene heterostructured gate-programmable PN junctions, a reconfigurable rectifier circuit is successfully fabricated to process alternating current (AC) signals with the reconfiguration time less than 25 μs and AC signal frequency prior 1 KHz. The design is like complementary metal-oxide-semiconductor (CMOS) configuration and should be beneficial for voltage output, static power consumption, and large-scale integration.

Abstract

The unique features of ambipolar two-dimensional materials open up a great opportunity to build gate-programmable devices for reconfigurable circuit applications, e.g., PN junctions for rectifier circuits. However, current-reported rectifier circuits usually consist of one gate-programmable PN junction as the rectifier and one resistor as the load, which are not conductive to voltage output and large-scale integration. Here we propose an approach of complementary gate-programmable PN junctions to assemble reconfigurable rectifier circuit, which include two symmetric back-to-back black phosphorus (BP)/hexagonal boron nitride (h-BN)/graphene heterostructured semi-gate field-effect transistors (FETs) and perform complementary NP and PN junction like complementary metal-oxide-semiconductor (CMOS) circuit. The investigation exhibits that the circuit can effectively reconfigure the circuit with/without rectifying ability, and can process alternating current (AC) signals with the frequency prior 1 KHz and reconfiguration speed up to 25 μs. We also achieve the reconfigurable rectifier circuit memory via complementary semi-floating gate FETs configuration. The complementary configuration here should be of low output impedance and low static power consumption, being beneficial for effective voltage output and large-scale integration.

Electronic Supplementary Material

Download File(s)
12274_2022_4724_MOESM1_ESM.pdf (616.2 KB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Li, X. X.; Fan, Z. Q.; Liu, P. Z.; Chen, M. L.; Liu, X.; Jia, C. K.; Sun, D. M.; Jiang, X. W.; Han, Z.; Bouchiat, V. et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 2017, 8, 970.

[3]

Liu, C. S.; Chen, H. W.; Hou, X.; Zhang, H.; Han, J.; Jiang, Y. G.; Zeng, X. Y.; Zhang, D. W.; Zhou, P. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662–667.

[4]

Liu, L. W.; Xu, N. S.; Zhang, Y.; Zhao, P.; Chen, H. J.; Deng, S. Z. Van der Waals bipolar junction transistor using vertically stacked two-dimensional atomic crystals. Adv. Funct. Mater. 2019, 29, 1807893.

[5]
Liu, C. J.; Wan, Y.; Li, L. J.; Lin, C. P.; Hou, T. H.; Huang, Z. Y.; Hu, V. P. H. 2D materials-based static random-access memory. Adv. Mater., in press, https://doi.org/10.1002/adma.202107894.
[6]

Rasmita, A.; Gao, W. B. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Res. 2021, 14, 1901–1911.

[7]

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

[8]

Vu, Q. A.; Shin, Y. S.; Kim, Y. R.; Nguyen, V. L.; Kang, W. T.; Kim, H.; Luong, D. H.; Lee, I. M.; Lee, K.; Ko, D. S. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.

[9]

Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

[10]

Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

[11]

Liu, L.; Liu, C. S.; Jiang, L. L.; Li, J. Y.; Ding, Y.; Wang, S. Y.; Jiang, Y. G.; Sun, Y. B.; Wang, J. L.; Chen, S. Y. et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 2021, 16, 874–881.

[12]
Zhou, Y.; Wang, Y. S.; Zhuge, F. W.; Guo, J. M.; Ma, S. J.; Wang, J. L.; Tang, Z. J.; Li, Y.; Miao, X. S.; He, Y. H. et al. Reconfigurable two-WSe2-transistor synaptic cell for reinforcement learning. Adv. Mater., in press, https://doi.org/10.1002/adma.202107754.
[13]

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

[14]
Chau, R.; Kavalieros, J.; Doyle, B.; Murthy, A.; Paulsen, N.; Lionberger, D.; Barlage, D.; Arghavani, R.; Roberds, B.; Doczy, M. A 50 nm depleted-substrate CMOS transistor (DST). In Proceedings International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), Washington, DC, USA, 2001, pp 29.1.1–29.1.4.
[15]

Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263–3269.

[16]

Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.

[17]

Zhang, P. F.; Li, D.; Chen, M. Y.; Zong, Q. J.; Shen, J.; Wan, D. Y.; Zhu, J. T.; Zhang, Z. X. Floating-gate controlled programmable non-volatile black phosphorus PNP junction memory. Nanoscale 2018, 10, 3148–3152.

[18]

Resta, G. V.; Balaji, Y.; Lin, D.; Radu, I. P.; Catthoor, F.; Gaillardon, P. E.; De Micheli, G. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018, 12, 7039–7047.

[19]

Hu, W. N.; Sheng, Z.; Hou, X.; Chen, H. W.; Zhang, Z. X.; Zhang, D. W.; Zhou, P. Ambipolar 2D semiconductors and emerging device applications. Small Methods 2021, 5, 2000837.

[20]

Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G. et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018, 11, 722–730.

[21]

Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

[22]

Li, D.; Wang, X. J.; Zhang, Q. C.; Zou, L. P.; Xu, X. F.; Zhang, Z. X. Nonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructures. Adv. Funct. Mater. 2015, 25, 7360–7365.

[23]

Wang, Y. R.; Wang, F.; Wang, Z. X.; Wang, J. J.; Yang, J.; Yao, Y. Y.; Li, N. N.; Sendeku, M. G.; Zhan, X. Y.; Shan, C. X. et al. Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res. 2021, 14, 4328–4335.

[24]

Jariwala, D.; Sangwan, V. K.; Wu, C. C.; Prabhumirashi, P. L.; Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable carbon nanotube-MoS2 heterojunction p–n diode. Proc. Natl. Acad. Sci. USA 2013, 110, 18076–18080.

[25]

Li, D.; Chen, M. Y.; Zong, Q. J.; Zhang, Z. X. Floating-gate manipulated graphene-black phosphorus heterojunction for nonvolatile ambipolar schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 2017, 17, 6353–6359.

[26]

Chen, Y.; Yin, C.; Wang, X. D.; Jiang, Y. Y.; Wang, H. L.; Wu, B. M.; Shen, H.; Lin, T.; Hu, W. D.; Meng, X. J. et al. Multimode signal processor unit based on the ambipolar WSe2-Cr schottky junction. ACS Appl. Mater. Interfaces 2019, 11, 38895–38901.

[27]

Li, D.; Wang, B.; Chen, M. Y.; Zhou, J.; Zhang, Z. X. Gate­controlled BP-WSe2 heterojunction diode for logic rectifiers and logic optoelectronics. Small 2017, 13, 1603726.

[28]

Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

[29]

Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

[30]

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

[31]

Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Wang, X. W.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X. L.; Li, D. et al. Nonvolatile MoTe2 p–n diodes for optoelectronic logics. ACS Nano 2019, 13, 7216–7222.

[32]

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261.

[33]

Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

[34]

Kong, L. A.; Chen, Y.; Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021, 14, 1768–1783.

[35]

Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

[36]

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.

[37]

Tong, L.; Peng, Z. R.; Lin, R. F.; Li, Z.; Wang, Y. L.; Huang, X. Y.; Xue, K. H.; Xu, H. Y.; Liu, F.; Xia, H. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358.

[38]

Chen, H. W.; Xue, X. Y.; Liu, C. S.; Fang, J. B.; Wang, Z.; Wang, J. L.; Zhang, D. W.; Hu, W. D.; Zhou, P. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 2021, 4, 399–404.

[39]

Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.

[40]

Zhou, Y.; Ning, J.; Shen, X.; Guo, H. B.; Zhang, C.; Dong, J. G.; Lu, W.; Feng, X.; Hao, Y. An ultrafast quasi-non-volatile semi-floating gate memory with low-power optoelectronic memory application. Adv. Electron. Mater. 2021, 7, 2100564.

[41]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[42]

Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J. S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890.

[43]

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

[44]

Lu, G. T.; Wei, Y.; Li, X. Z.; Peng, R. X.; Zhang, G. Q.; Mei, Z.; Liang, L.; Liu, K.; Li, Q. Q.; Fan, S. S. et al. Reconfigurable carbon nanotube barristor. Adv. Funct. Mater. 2022, 32, 2107454.

[45]

Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

[46]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[47]
Sze, S. M.; Ng, K. K. Physics of semiconductor devices; John Wiley & Sons: Hoboken, NJ, USA, 2006.
[48]

Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Chu, D. P. Electrical rectifying and photosensing property of Schottky diode based on MoS2. ACS Appl. Mater. Interfaces 2018, 10, 24613–24619.

[49]

Jeon, P. J.; Min, S. W.; Kim, J. S.; Raza, S. R. A.; Choi, K.; Lee, H. S.; Lee, Y. T.; Hwang, D. K.; Choi, H. J.; Im, S. Enhanced device performances of WSe2-MoS2 van der Waals junction p–n diode by fluoropolymer encapsulation. J. Mater. Chem. C 2015, 3, 2751–2758.

[50]

Fuhrer, M. S.; Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146–147.

Nano Research
Pages 1252-1258
Cite this article:
Sheng Z, Wang Y, Hu W, et al. Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit. Nano Research, 2023, 16(1): 1252-1258. https://doi.org/10.1007/s12274-022-4724-5
Topics:

813

Views

11

Crossref

11

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 10 June 2022
Revised: 01 July 2022
Accepted: 01 July 2022
Published: 11 August 2022
© Tsinghua University Press 2022
Return