AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrafast metal oxide reduction at Pd/PdO2 interface enables one-second hydrogen gas detection under ambient conditions

Xin Geng1,§Shuwei Li2,3,4,§Zhi Mei1Dongsheng Li5Liang Zhang2,3,4( )Long Luo1( )
Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
Center for Combustion Energy, Tsinghua University, Beijing 100084, China
School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
State Key Laboratory of Automotive Safety and Energy, Beijing 100084, China
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA

§ Xin Geng and Shuwei Li contributed equally to this work.

Show Author Information

Graphical Abstract

We report a Pd/PdOx sensing material that achieves 1-s detection of 4% H2 gas (i.e., the lower explosive limit concentration for H2) at room temperature in air. Furthermore, the mechanistic study reveals that the ultrafast PdOx reduction at the Pd/PdO2 interface in Pd/PdOx enables the 1-s H2 gas detection.

Abstract

Here, we report a Pd/PdOx sensing material that achieves 1-s detection of 4% H2 gas (i.e., the lower explosive limit concentration for H2) at room temperature in air. The Pd/PdOx material is a network of interconnected nanoscopic domains of Pd, PdO, and PdO2. Upon exposure to 4% H2, PdO and PdO2 in the Pd/PdOx are immediately reduced to metallic Pd, generating over a > 90% drop in electrical resistance. The mechanistic study reveals that the Pd/PdO2 interface in Pd/PdOx is responsible for the ultrafast PdOx reduction. Metallic Pd at the Pd/PdO2 interface enables fast H2 dissociation to adsorbed H atoms, significantly lowering the PdO2 reduction barrier. In addition, control experiments suggest that the interconnectivity of Pd, PdO, and PdO2 in our Pd/PdOx sensing material further facilitates the reduction of PdO, which would otherwise not occur. The 1-s response time of Pd/PdOx under ambient conditions makes it an excellent alarm for the timely detection of hydrogen gas leaks.

Electronic Supplementary Material

Download File(s)
12274_2022_4816_MOESM1_ESM.pdf (2 MB)

References

[1]
Hydrogen to the rescue. Nat. Mater. 2018, 17, 565.
[2]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[3]

Koo, W. T.; Cho, H. J.; Kim, D. H.; Kim, Y. H.; Shin, H.; Penner, R. M.; Kim, I. D. Chemiresistive hydrogen sensors: Fundamentals, recent advances, and challenges. ACS Nano 2020, 14, 14284–14322.

[4]
Multi-Year Research, Development, and Demonstration Plan, 2011–2020. Section 3.7 Hydrogen Safety, Codes and Standards (EERE, 2015); U.S. Department of Energy, Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office: Washington, DC, 2005.
[5]

Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B 2011, 157, 329–352.

[6]

Bannenberg, L.; Schreuders, H.; Dam, B. Tantalum-palladium: Hysteresis-free optical hydrogen sensor over 7 orders of magnitude in pressure with sub-second response. Adv. Funct. Mater. 2021, 31, 2010483.

[7]

Pour, G. B.; Aval, L. F.; Esmaili, P. Performance of gas nanosensor in 1–4 per cent hydrogen concentration. Sens. Rev. 2019, 39, 622–628.

[8]

Chang, T.; Jung, H.; Jang, B.; Lee, J.; Noh, J. S.; Lee, W. Nanogaps controlled by liquid nitrogen freezing and the effects on hydrogen gas sensor performance. Sens. Actuators A: Phys. 2013, 192, 140–144.

[9]

Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 2227–2231.

[10]

Lee, J.; Noh, J. S.; Lee, S. H.; Song, B.; Jung, H.; Kim, W.; Lee, W. Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrogen Energy 2012, 37, 7934–7939.

[11]

Nugroho, F. A. A.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L. J.; da Silva Fanta, A. B.; Kadkhodazadeh, S.; Wagner, J. B.; Antosiewicz, T. J. et al. Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 2019, 18, 489–495.

[12]

Sirbuly, D. J.; Létant, S. E.; Ratto, T. V. Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites. Adv. Mater. 2008, 20, 4724–4727.

[13]

Xu, T.; Zach, M. P.; Xiao, Z. L.; Rosenmann, D.; Welp, U.; Kwok, W. K.; Crabtree, G. W. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 2005, 86, 203104.

[14]

Luong, H. M.; Pham, M. T.; Guin, T.; Madhogaria, R. P.; Phan, M. H.; Larsen, G. K.; Nguyen, T. D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. Nat. Commun. 2021, 12, 2414.

[15]

Darmadi, I.; Nugroho, F. A. A.; Kadkhodazadeh, S.; Wagner, J. B.; Langhammer, C. Rationally designed PdAuCu ternary alloy nanoparticles for intrinsically deactivation-resistant ultrafast plasmonic hydrogen sensing. ACS Sens. 2019, 4, 1424–1432.

[16]

Lee, J.; Shim, W.; Lee, E.; Noh, J. S.; Lee, W. Highly mobile palladium thin films on an elastomeric substrate: Nanogap-based hydrogen gas sensors. Angew. Chem., Int. Ed. 2011, 50, 5301–5305.

[17]

Koo, W. T.; Qiao, S. P.; Ogata, A. F.; Jha, G.; Jang, J. S.; Chen, V. T.; Kim, I. D.; Penner, R. M. Accelerating palladium nanowire H2 sensors using engineered nanofiltration. ACS Nano 2017, 11, 9276–9285.

[18]

Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B: Chem. 2005, 108, 2–14.

[19]

Rukini, A.; Rhamdhani, M. A.; Brooks, G. A.; Van den Bulck, A. Metals production and metal oxides reduction using hydrogen: A review. J. Sustainable Metall. 2022, 8, 1–24.

[20]

Kim, J. Y.; Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 2003, 125, 10684–10692.

[21]

Su, S. C.; Carstens, J. N.; Bell, A. T. A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4. J. Catal. 1998, 176, 125–135.

[22]

O’Connor, C. R.; van Spronsen, M. A.; Egle, T.; Xu, F.; Kersell, H. R.; Oliver-Meseguer, J.; Karatok, M.; Salmeron, M.; Madix, R. J.; Friend, C. M. Hydrogen migration at restructuring palladium-silver oxide boundaries dramatically enhances reduction rate of silver oxide. Nat. Commun. 2020, 11, 1844.

[23]

Manukyan, K. V.; Avetisyan, A. G.; Shuck, C. E.; Chatilyan, H. A.; Rouvimov, S.; Kharatyan, S. L.; Mukasyan, A. S. Nickel oxide reduction by hydrogen: Kinetics and structural transformations. J. Phys. Chem. C 2015, 119, 16131–16138.

[24]

Martin, N. M.; Van den Bossche, M.; Grönbeck, H.; Hakanoglu, C.; Gustafson, J.; Blomberg, S.; Arman, M. A.; Antony, A.; Rai, R.; Asthagiri, A. et al. Dissociative adsorption of hydrogen on PdO (101) studied by HRCLS and DFT. J. Phys. Chem. C 2013, 117, 13510–13519.

[25]

Li, R. Z.; Wang, D. S. Understanding the structure−performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[26]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[27]

Bliem, R.; van der Hoeven, J.; Zavodny, A.; Gamba, O.; Pavelec, J.; de Jongh, P. E.; Schmid, M.; Diebold, U.; Parkinson, G. S. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem., Int. Ed. 2015, 54, 13999–14002.

[28]

Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Highly enantioselective Cu-catalyzed conjugate additions of dialkylzinc reagents to unsaturated furanones and pyranones: Preparation of air-stable and catalytically active Cu-peptide complexes. Angew. Chem., Int. Ed. 2005, 44, 5306–5310.

[29]

Carrettin, S.; Concepción, P.; Corma, A.; Nieto, J. M. L.; Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem., Int. Ed. 2004, 43, 2538–2540.

[30]

Falsig, H.; Hvolbæk, B.; Kristensen, I. S.; Jiang, T.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem., Int. Ed. 2008, 47, 4835–4839.

[31]

Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.

[32]

Rodriguez, J. A.; Graciani, J.; Evans, J.; Park, J. B.; Yang, F.; Stacchiola, D.; Senanayake, S. D.; Ma, S. G.; Pérez, M.; Liu, P. et al. Water-gas shift reaction on a highly active inverse CeOx/Cu (111) catalyst: Unique role of ceria nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 8047–8050.

[33]

Puigdollers, A. R.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017, 7, 6493–6513.

[34]

Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Tailoring the shape of metal Ad-particles by doping the oxide support. Angew. Chem., Int. Ed. 2011, 50, 11525–11527.

[35]

Sterrer, M.; Yulikov, M.; Fischbach, E.; Heyde, M.; Rust, H. P.; Pacchioni, G.; Risse, T.; Freund, H. J. Interaction of gold clusters with color centers on MgO (001) films. Angew. Chem., Int. Ed. 2006, 45, 2630–2632.

[36]

Sun, Y. N.; Giordano, L.; Goniakowski, J.; Lewandowski, M.; Qin, Z. H.; Noguera, C.; Shaikhutdinov, S.; Pacchioni, G.; Freund, H. J. The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew. Chem., Int. Ed. 2010, 49, 4418–4421.

[37]

Widmann, D.; Behm, R. J. Active oxygen on a Au/TiO2 catalyst: Formation, stability, and CO oxidation activity. Angew. Chem., Int. Ed. 2011, 50, 10241–10245.

[38]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[39]

Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles. J. Phys. Chem. 1964, 68, 411–412.

[40]

Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

[41]

Schilling, A. C.; Groden, K.; Simonovis, J. P.; Hunt, A.; Hannagan, R. T.; Çınar, V.; McEwen, J. S.; Sykes, E. C. H.; Waluyo, I. Accelerated Cu2O reduction by single Pt atoms at the metal-oxide interface. ACS Catal. 2020, 10, 4215–4226.

[42]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[43]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[44]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[45]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[46]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[47]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[48]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[49]

Cai, B.; Dianat, A., Hübner, R.; Liu, W.; Wen, D.; Benad, A.; Sonntag, L.; Gemming, T.; Cuniberti, G.; Eychmüller, A. Multimetallic hierarchical aerogels: Shape engineering of the building blocks for efficient electrocatalysis. Adv. Mater. 2017, 29, 1605254.

[50]

Cai, B.; Sayevich, V.; Gaponik, N.; Eychmüller, A. Emerging hierarchical aerogels: Self-Assembly of metal and semiconductor nanocrystals. Adv. Mater. 2018, 30, 1707518.

[51]

Cai, B.; Eychmüller, A. Promoting electrocatalysis upon aerogels. Adv. Mater. 2019, 31, 1804881.

[52]

Huang, W. X.; Johnston-Peck, A. C.; Wolter, T.; Yang, W. C. D.; Xu, L.; Oh, J.; Reeves, B. A.; Zhou, C. S.; Holtz, M. E.; Herzing, A. A. et al. Steam-created grain boundaries for methane C–H activation in palladium catalysts. Science 2021, 373, 1518–1523.

[53]

Hickling, A.; Vrjosek, G. G. Anodic oxidation of palladium. Trans. Faraday Soc. 1961, 57, 123–129.

[54]
Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, 2009.
[55]

Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Consequences of metal-oxide interconversion for C–H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 2013, 135, 15425–15442.

[56]

Gabasch, H.; Knop-Gericke, A.; Schlögl, R.; Borasio, M.; Weilach, C.; Rupprechter, G.; Penner, S.; Jenewein, B.; Hayek, K.; Klötzer, B. Comparison of the reactivity of different Pd-O species in CO oxidation. Phys. Chem. Chem. Phys. 2007, 9, 533–540.

[57]

Kim, H. J.; Lee, J. H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B: Chem. 2014, 192, 607–627.

[58]

Rogers, D. B.; Shannon, R. D.; Gillson, J. L. Crystal growth and semiconductivity of palladium oxide. J. Solid State Chem. 1971, 3, 314–316.

[59]

Cho, H. J.; Chen, V. T.; Qiao, S. P.; Koo, W. T.; Penner, R. M.; Kim, I. D. Pt-functionalized PdO nanowires for room temperature hydrogen gas sensors. ACS Sens. 2018, 3, 2152–2158.

[60]

Belousov, V. M.; Vasylyev, M. A.; Lyashenko, L. V.; Vilkova, N. Y.; Nieuwenhuys, B. E. The low-temperature reduction of Pd-doped transition metal oxide surfaces with hydrogen. Chem. Eng. J. 2003, 91, 143–150.

[61]

Gao, Z. M.; Wang, T. Q.; Li, X. F.; Li, Q.; Zhang, X. M.; Cao, T. L.; Li, Y. N.; Zhang, L. Y.; Guo, L.; Fu, Y. Pd-decorated PdO hollow shells: A H2-sensing system in which catalyst nanoparticle and semiconductor support are interconvertible. ACS Appl. Mater. Interfaces 2020, 12, 42971–42981.

[62]

Yang, S.; Li, Q.; Li, C.; Cao, T. L.; Wang, T. Q.; Fan, F. Q.; Zhang, X. M.; Fu, Y. Enhancing the hydrogen-sensing performance of p-type PdO by modulating the conduction model. ACS Appl. Mater. Interfaces 2021, 13, 52754–52764.

Nano Research
Pages 1149-1157
Cite this article:
Geng X, Li S, Mei Z, et al. Ultrafast metal oxide reduction at Pd/PdO2 interface enables one-second hydrogen gas detection under ambient conditions. Nano Research, 2023, 16(1): 1149-1157. https://doi.org/10.1007/s12274-022-4816-2
Topics:

987

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 16 June 2022
Revised: 21 July 2022
Accepted: 22 July 2022
Published: 19 August 2022
© Battelle Memorial Institute under exclusive licence to Tsinghua University Press 2022
Return