Here, we report a Pd/PdOx sensing material that achieves 1-s detection of 4% H2 gas (i.e., the lower explosive limit concentration for H2) at room temperature in air. The Pd/PdOx material is a network of interconnected nanoscopic domains of Pd, PdO, and PdO2. Upon exposure to 4% H2, PdO and PdO2 in the Pd/PdOx are immediately reduced to metallic Pd, generating over a > 90% drop in electrical resistance. The mechanistic study reveals that the Pd/PdO2 interface in Pd/PdOx is responsible for the ultrafast PdOx reduction. Metallic Pd at the Pd/PdO2 interface enables fast H2 dissociation to adsorbed H atoms, significantly lowering the PdO2 reduction barrier. In addition, control experiments suggest that the interconnectivity of Pd, PdO, and PdO2 in our Pd/PdOx sensing material further facilitates the reduction of PdO, which would otherwise not occur. The 1-s response time of Pd/PdOx under ambient conditions makes it an excellent alarm for the timely detection of hydrogen gas leaks.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2023, 16(1): 1149-1157
Published: 19 August 2022
Downloads:75
Total 1