AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quick photofabrication of functional nanospheres from de novo designed peptides for NIR fluorescence and MR imaging

Jingyi Zhao1Chen Li1Xue-Wang Gao2Ke Feng2Hao Liu1Sijie He1Wenhua Zhao1Shumin Yang1Jianqun Shao1Ling Ye1Bin Chen2Nan Xie1( )Chen-Ho Tung2Li-Zhu Wu2( )
School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Functional peptide nanospheres (PNS) are constructed photochemically from de novo designed peptides, which is able to host cationic indicators of fluorescent rhodamine and magnetic GdIII for exemplar near infrared (NIR) fluorescence and magnetic resonance (MR) imaging applications.

Abstract

Combining the noncovalent and covalent interactions, a series of peptide amphiphiles were designed de novo and synthesized to architect functional assemblies by means of photochemistry. The strand of peptide sequence was structurally capped with photoactive tyrosine-tyrosine (YY) motifs at both termini, and the spacing was filled by alternating of hydrophilic D (L-aspartate) and hydrophobic X (ε-aminocaproic acid) structure. Upon visible-light irradiation, these de novo designed peptides underwent rapid photocrosslinking within merely 10 min. Interestingly, the modulation of alternating D–X pairs in occupying spacer would adjust molecular amphiphilicity, regulate charge distribution, and control particle size and loading capacity of peptide nanospheres (PNS) in aqueous media. With entirely peptide-based matrix, this PNS system could host cationic indicators of fluorescent rhodamine and magnetic GdIII for exemplar near infrared (NIR) fluorescence and magnetic resonance (MR) imaging, which paves a pathway to biomaterial and biomedical applications using de novo designed peptides.

Electronic Supplementary Material

Download File(s)
12274_2022_4826_MOESM1_ESM.pdf (3.3 MB)

References

[1]

Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.

[2]

Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

[3]

Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 2017, 29, 1605021.

[4]

Feng, Z. Q. Q.; Zhang, T. F.; Wang, H. M.; Xu, B. Supramolecular catalysis and dynamic assemblies for medicine. Chem. Soc. Rev. 2017, 46, 6470–6479.

[5]

Okesola, B. O.; Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 2018, 47, 3721–3736.

[6]

Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604.

[7]

Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Pept. Sci. 2010, 94, 1–18.

[8]

Hermans, T. M. Materials from a peptide soup. Nat. Nanotechnol. 2016, 11, 920–921.

[9]

Van Tran, V.; Moon, J. Y.; Lee, Y. C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release 2019, 300, 114–140.

[10]

Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007, 36, 1263–1269.

[11]

Hamley, I. W. Peptide nanotubes. Angew. Chem., Int. Ed. 2014, 53, 6866–6881.

[12]

Kumar, M.; Ing, N. L.; Narang, V.; Wijerathne, N. K.; Hochbaum, A. I.; Ulijn, R. V. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 2018, 10, 696–703.

[13]

Lampel, A.; Ulijn, R. V.; Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 2018, 47, 3737–3758.

[14]

Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444.

[15]

Zhang, P. C.; Cui, Y. G.; Anderson, C. F.; Zhang, C. L.; Li, Y. P.; Wang, R. F.; Cui, H. G. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem. Soc. Rev. 2018, 47, 3490–3529.

[16]

Fan, Z.; Sun, L. M.; Huang, Y. J.; Wang, Y. Z.; Zhang, M. J. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388–394.

[17]

Jiang, Q. C.; Liu, X. Y.; Liang, G. L.; Sun, X. B. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021, 13, 15142–15150.

[18]

Hu, B. B.; Song, N.; Cao, Y. W.; Li, M. M.; Liu, X.; Zhou, Z. F.; Shi, L. Q.; Yu, Z. L. Noncanonical amino acids for hypoxia-responsive peptide self-assembly and fluorescence. J. Am. Chem. Soc. 2021, 143, 13854–13864.

[19]

Li, Q.; Zhang, J. X.; Wang, Y. F.; Zhang, G.; Qi, W.; You, S. P.; Su, R. X.; He, Z. M. Self-assembly of peptide hierarchical helical arrays with sequence-encoded circularly polarized luminescence. Nano Lett. 2021, 21, 6406–6415.

[20]

Zhou, Q. Y.; Zhao, T. C.; Liu, M. L.; Yin, D. R.; Liu, M. C.; Elzatahry, A. A.; Zhang, F.; Zhao, D. Y.; Li, Y. M. Highly stable hybrid single-micelle: A universal nanocarrier for hydrophobic bioimaging agents. Nano Res. 2022, 15, 4582–4589.

[21]

Sato, K.; Hendricks, M. P.; Palmer, L. C.; Stupp, S. I. Peptide supramolecular materials for therapeutics. Chem. Soc. Rev. 2018, 47, 7539–7551.

[22]

Abbas, M.; Lipiński, W. P.; Wang, J. H.; Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 2021, 50, 3690–3705.

[23]

Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmoc-modified amino acids and short peptides: Simple bio-inspired building blocks for the fabrication of functional materials. Chem. Soc. Rev. 2016, 45, 3935–3953.

[24]

Sheehan, F.; Sementa, D.; Jain, A.; Kumar, M.; Tayarani-Najjaran, M.; Kroiss, D.; Ulijn, R. V. Peptide-based supramolecular systems chemistry. Chem. Rev. 2021, 121, 13869–13914.

[25]

Shy, A. N.; Kim, B. J.; Xu, B. Enzymatic noncovalent synthesis of supramolecular soft matter for biomedical applications. Matter 2019, 1, 1127–1147.

[26]

Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016, 9, 663–673.

[27]

Wang, C.; Piao, J. F.; Li, Y. J.; Tian, X. C.; Dong, Y. C.; Liu, D. S. Construction of liposomes mimicking cell membrane structure through frame-guided assembly. Angew. Chem., Int. Ed. 2020, 59, 15176–15180.

[28]

Gelain, F.; Luo, Z. L.; Zhang, S. G. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev. 2020, 120, 13434–13460.

[29]

Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.

[30]

Gray, V. P.; Amelung, C. D.; Duti, I. J.; Laudermilch, E. G.; Letteri, R. A.; Lampe, K. J. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater. 2022, 140, 43–75.

[31]

Sinha, N. J.; Langenstein, M. G.; Pochan, D. J.; Kloxin, C. J.; Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 2021, 121, 13915–13935.

[32]

Pigliacelli, C.; Sanjeeva, K. B.; Nonappa; Pizzi, A.; Gori, A.; Bombelli, F. B.; Metrangolo, P. In situ generation of chiroptically-active gold-peptide superstructures promoted by iodination. ACS Nano 2019, 13, 2158–2166.

[33]

Sangji, M. H.; Sai, H.; Chin, S. M.; Lee, S. R.; Sasselli, I. R.; Palmer, L. C.; Stupp, S. I. Supramolecular interactions and morphology of self-assembling peptide amphiphile nanostructures. Nano Lett. 2021, 21, 6146–6155.

[34]

Ji, W.; Tang, Y. M.; Makam, P.; Yao, Y. F.; Jiao, R. R.; Cai, K. Y.; Wei, G. H.; Gazit, E. Expanding the structural diversity and functional scope of diphenylalanine-based peptide architectures by hierarchical coassembly. J. Am. Chem. Soc. 2021, 143, 17633–17645.

[35]

Zhang, S. S.; Asghar, S.; Zhu, C. Q.; Ye, J. X.; Lin, L.; Xu, L.; Hu, Z. Y.; Chen, Z. P.; Shao, F.; Xiao, Y. Y. Multifunctional nanorods based on self-assembly of biomimetic apolipoprotein E peptide for the treatment of Alzheimer’s disease. J. Control. Release 2021, 335, 637–649.

[36]

Xing, P. Y.; Chen, H. Z.; Xiang, H. J.; Zhao, Y. L. Selective coassembly of aromatic amino acids to fabricate hydrogels with light irradiation-induced emission for fluorescent imprint. Adv. Mater. 2018, 30, 1705633.

[37]

Wang, F. B.; Gnewou, O.; Wang, S. Y.; Osinski, T.; Zuo, X. B.; Egelman, E. H.; Conticello, V. P. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 2021, 4, 3217–3231.

[38]

Lampel, A.; McPhee, S. A.; Park, H. A.; Scott, G. G.; Humagain, S.; Hekstra, D. R.; Yoo, B.; Frederix, P. W. J. M.; Li, T. D.; Abzalimov, R. R. et al. Polymeric peptide pigments with sequence-encoded properties. Science 2017, 356, 1064–1068.

[39]

Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300, 625–627.

[40]

Rho, J. Y.; Cox, H.; Mansfield, E. D. H.; Ellacott, S. H.; Peltier, R.; Brendel, J. C.; Hartlieb, M.; Waigh, T. A.; Perrier, S. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nat. Comm. 2019, 10, 4708.

[41]

Brea, R. J.; Devaraj, N. K. Continual reproduction of self-assembling oligotriazole peptide nanomaterials. Nat. Comm. 2017, 8, 730.

[42]

Liu, Y. M.; Shen, G. Z.; Zhao, L. Y.; Zou, Q. L.; Jiao, T. F.; Yan, X. H. Robust photothermal nanodrugs based on covalent assembly of nonpigmented biomolecules for antitumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 41898–41905.

[43]

Schröder, H. V.; Zhang, Y.; Link, A. J. Dynamic covalent self-assembly of mechanically interlocked molecules solely made from peptides. Nat. Chem. 2021, 13, 850–857.

[44]

Zhu, H. T. Z.; Wang, H. H.; Shi, B. B.; Shangguan, L. Q.; Tong, W. J.; Yu, G. C.; Mao, Z. W.; Huang, F. H. Supramolecular peptide constructed by molecular Lego allowing programmable self-assembly for photodynamic therapy. Nat. Comm. 2019, 10, 2412.

[45]

Fass, D.; Thorpe, C. Chemistry and enzymology of disulfide cross-linking in proteins. Chem. Rev. 2018, 118, 1169–1198.

[46]

Li, B. X.; Kim, D. K.; Bloom, S.; Huang, R. Y. C.; Qiao, J. X.; Ewing, W. R.; Oblinsky, D. G.; Scholes, G. D.; MacMillan, D. W. C. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nat. Chem. 2021, 13, 902–908.

[47]

Chen, B.; Wu, L. Z.; Tung, C. H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings. Acc. Chem. Res. 2018, 51, 2512–2523.

[48]

Peng, H. Q.; Niu, L. Y.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem. Rev. 2015, 115, 7502–7542.

[49]

Zhang, Y. N.; Avery, R. K.; Vallmajo-Martin, Q.; Assmann, A.; Vegh, A.; Memic, A.; Olsen, B. D.; Annabi, N.; Khademhosseini, A. A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv. Funct. Mater. 2015, 25, 4814–4826.

[50]

Dumas, A.; Lercher, L.; Spicer, C. D.; Davis, B. G. Designing logical codon reassignment-expanding the chemistry in biology. Chem. Sci. 2015, 6, 50–69.

[51]

Huang, G. Y.; Li, F.; Zhao, X.; Ma, Y. F.; Li, Y. H.; Lin, M.; Jin, G. R.; Lu, T. J.; Genin, G. M.; Xu, F. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 2017, 117, 12764–12850.

[52]

Mu, X.; Yuen, J. S. K. Jr.; Choi, J.; Zhang, Y. X.; Cebe, P.; Jiang, X. C.; Zhang, Y. S.; Kaplan, D. L. Conformation-driven strategy for resilient and functional protein materials. Proc. Natl. Acad. Sci. USA 2022, 119, e2115523119.

[53]

Min, K. I.; Kim, D. H.; Lee, H. J.; Lin, L.; Kim, D. P. Direct synthesis of a covalently self-assembled peptide nanogel from a tyrosine-rich peptide monomer and its biomineralized hybrids. Angew. Chem. 2018, 130, 5732–5736.

[54]

Huang, Y. F.; Lu, S. C.; Huang, Y. C.; Jan, J. S. Cross-linked, self-fluorescent gold nanoparticle/polypeptide nanocapsules comprising dityrosine for protein encapsulation and label-free imaging. Small 2014, 10, 1939–1944.

[55]

Fancy, D. A.; Kodadek, T. Chemistry for the analysis of protein–protein interactions: Rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl. Acad. Sci. USA 1999, 96, 6020–6024.

[56]

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

[57]

Li, C.; Feng, K.; Xie, N.; Zhao, W. H.; Ye, L.; Chen, B.; Tung, C. H.; Wu, L. Z. Mesoporous silica-coated gold nanorods with designable anchor peptides for chemo-photothermal cancer therapy. ACS Appl. Nano Mater. 2020, 3, 5070–5078.

[58]

Elvin, C. M.; Carr, A. G.; Huson, M. G.; Maxwell, J. M.; Pearson, R. D.; Vuocolo, T.; Liyou, N. E.; Wong, D. C. C.; Merritt, D. J.; Dixon, N. E. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 2005, 437, 999–1002.

[59]

Peng, H. Q.; Chen, Y. Z.; Zhao, Y.; Yang, Q. Z.; Wu, L. Z.; Tung, C. H.; Zhang, L. P.; Tong, Q. X. Artificial light-harvesting system based on multifunctional surface-cross-linked micelles. Angew. Chem., Int. Ed. 2012, 51, 2088–2092.

[60]

An, H. W.; Hou, D. Y.; Zheng, R.; Wang, M. D.; Zeng, X. Z.; Xiao, W. Y.; Yan, T. D.; Wang, J. Q.; Zhao, C. H.; Cheng, L. M. et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma. ACS Nano 2020, 14, 927–936.

[61]

Ren, H.; Zeng, X. Z.; Zhao, X. X.; Hou, D. Y.; Yao, H. D.; Yaseen, M.; Zhao, L. N.; Xu, W. H.; Wang, H.; Li, L. L. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat. Commun. 2022, 13, 418.

Nano Research
Pages 4029-4038
Cite this article:
Zhao J, Li C, Gao X-W, et al. Quick photofabrication of functional nanospheres from de novo designed peptides for NIR fluorescence and MR imaging. Nano Research, 2023, 16(3): 4029-4038. https://doi.org/10.1007/s12274-022-4826-0
Topics:
Part of a topical collection:

1016

Views

3

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 04 May 2022
Revised: 24 July 2022
Accepted: 27 July 2022
Published: 19 August 2022
© Tsinghua University Press 2022
Return