AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Light-driven soft actuator based on graphene and WSe2 nanosheets composite for multimodal motion and remote manipulation

Zewen Su1Yingjie Zhao1Youqiang Huang1Chaoyue Xu2Xiaolei Yang1Binrui Wang2( )Beibei Xu3Shiqing Xu1( )Gongxun Bai1( )
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
Key laboratory of Modern Optical Instruments, Zhejiang University, Hangzhou 310018, China
Show Author Information

Graphical Abstract

The programmable soft actuators based on two-dimensional (2D) nanosheets heterojunction and flexible base can be fabricated through bioinspired shape design. The designed soft actuators can move at different conditions. And the developed soft gripper can lift objects which is four times heavier than its own weight.

Abstract

Remote controlled soft actuators have attracted ever-increasing interest in industrial, medical, robotics, and engineering fields. Soft actuators are charming than normal tools in executing dedicate tasks due to small volume and flexible body they have. However, it remains a challenge to design soft actuator that can adapt to multi-environments under remote stimuli with promising nano materials. Herein, we have developed a kind of near-infrared laser driven soft actuators with multi locomotive modes based on WSe2 and graphene nanosheets heterojunction. Different locomotion modes are driven by photothermal effect induced deformation to adapt to different working conditions. Moreover, the specially designed gripper driven by pulsed laser can lift a heavy load which is four times of its weight. This work broadens the choice of advanced nanomaterials for photothermal conversion of soft actuators. It is promising to realize applications including photothermal therapy and complex environment detection through the combination of the intelligent robot design and optical fiber system.

Electronic Supplementary Material

Video
12274_2022_4827_MOESM2.mp4
12274_2022_4827_MOESM3.mp4
12274_2022_4827_MOESM4.mp4
Download File(s)
12274_2022_4827_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Kaspar, C.; Ravoo, B. J.; Van Der Wiel, W. G.; Wegner, S. V.; Pernice, W. H. P. The rise of intelligent matter. Nature 2021, 594, 345–355.

[2]

Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.

[3]

Khodambashi, R.; Alsaid, Y.; Rico, R.; Marvi, H.; Peet, M. M.; Fisher, R. E.; Berman, S.; He, X. M.; Aukes, D. M. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater. 2021, 33, 2005906.

[4]

Rafsanjani, A.; Zhang, Y. R.; Liu, B. Y.; Rubinstein, S. M.; Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 2018, 3, eaar7555.

[5]

He, Q. G.; Wang, Z. J.; Wang, Y.; Minori, A.; Tolley, M. T.; Cai, S. Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv. 2019, 5, eaax5746.

[6]

Zhang, J. C.; Ren, Z. Y.; Hu, W. Q.; Soon, R. H.; Yasa, I. C.; Liu, Z. M.; Sitti, M. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 2021, 6, eabf0112.

[7]

Nie, Z. Z.; Zuo, B.; Wang, M.; Huang, S.; Chen, X. M.; Liu, Z. Y.; Yang, H. Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 2021, 12, 2334.

[8]

Cheng, Y. C.; Lu, H. C.; Lee, X.; Zeng, H.; Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 2020, 32, 1906233.

[9]

Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V. H.; Zhou, Q. T.; Nam, S.; Oh, I. K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797.

[10]

Xiao, J. L.; Zhou, T.; Yao, N.; Ma, S. Q.; Pan, C. X. Y.; Wang, P.; Fu, H. R.; Liu, H. T.; Pan, J.; Yu, L. T. et al. Optical fibre taper-enabled waveguide photoactuators. Nat. Commun. 2022, 13, 363.

[11]

Hu, Y.; Ji, Q. X.; Huang, M. J.; Chang, L. F.; Zhang, C. C.; Wu, G.; Zi, B.; Bao, N. Z.; Chen, W.; Wu, Y. C. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem., Int. Ed. 2021, 60, 20511–20517.

[12]

Li, Z. W.; Myung, N. V.; Yin, Y. D. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Robot. 2021, 6, eabi4523.

[13]

Zhang, M. C.; Shahsavan, H.; Guo, Y. B.; Pena-Francesch, A.; Zhang, Y. Y.; Sitti, M. Liquid-crystal-elastomer-actuated reconfigurable microscale Kirigami metastructures. Adv. Mater. 2021, 33, 2008605.

[14]

Cai, G. F.; Ciou, J. H.; Liu, Y. Z.; Jiang, Y.; Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956.

[15]

Ying, Y. L.; Plutnar, J.; Pumera, M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small 2021, 17, 2100294.

[16]

Banerjee, S. S.; Arief, I.; Berthold, R.; Wiese, M.; Bartholdt, M.; Ganguli, D.; Mitra, S.; Mandal, S.; Wallaschek, J.; Raatz, A. et al. Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator. Appl. Mater. Today 2021, 25, 101219.

[17]

Chen, Y. H.; Yang, J. J.; Zhang, X.; Feng, Y. Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.

[18]

Fan, X. Q.; Ding, Y.; Liu, Y.; Liang, J. J.; Chen, Y. S. Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 2019, 13, 8124–8134.

[19]

Gao, D. C.; Lin, M. F.; Xiong, J. Q.; Li, S. H.; Lou, S. N.; Liu, Y. Z.; Ciou, J. H.; Zhou, X. R.; Lee, P. S. Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers. Nanoscale Horiz. 2020, 5, 730–738.

[20]

Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Func. Mater. 2018, 28, 1802235.

[21]

Xiang, S. L.; Su, Y. X.; Yin, H.; Li, C.; Zhu, M. Q. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 2021, 85, 105965.

[22]

Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453.

[23]

Yang, Y. Y.; Liu, Y. T.; Shen, Y. J. Plasmonic-assisted graphene oxide films with enhanced photothermal actuation for soft robots. Adv. Funct. Mater. 2020, 30, 1910172.

[24]

Da Cunha, M. P.; Ambergen, S.; Debije, M. G.; Homburg, E. F. G. A.; Den Toonder, J. M. J.; Schenning, A. P. H. J. A soft transporter robot fueled by light. Adv. Sci. 2020, 7, 1902842.

[25]

Hu, Y.; Yang, L. L.; Yan, Q. Y.; Ji, Q. X.; Chang, L. F.; Zhang, C. C.; Yan, J.; Wang, R. R.; Zhang, L.; Wu, G. et al. Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 2021, 15, 5294–5306.

[26]

Zhu, Y.; Wang, Y. J.; Williams, G. R.; Fu, L. Y.; Wu, J. J.; Wang, H.; Liang, R. Z.; Weng, X. S.; Wei, M. Multicomponent transition metal dichalcogenide nanosheets for imaging-guided photothermal and chemodynamic therapy. Adv. Sci. 2020, 7, 2000272.

[27]

Su, Z. W.; Zhao, Y. J.; Huang, Y. Q.; Lian, Y. B.; Xu, S. Q.; Bai, G. X. Bi-functional nanocomposite based on phosphor and carbon nanotubes for tumor ablation in a photothermal fiber system with temperature feedback. Chem. Eng. J. 2022, 436, 134994.

[28]

Zhou, Z.; Li, B. W.; Shen, C.; Wu, D.; Fan, H. C.; Zhao, J. Q.; Li, H.; Zeng, Z. Y.; Luo, Z. M.; Ma, L. F. et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. Small 2020, 16, 2004173.

[29]

Liu, L.; Liu, M. H.; Deng, L. L.; Lin, B. P.; Yang, H. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property. J. Am. Chem. Soc. 2017, 139, 11333–11336.

[30]

Liu, Y.; Xu, X.; Wei, Y.; Chen, Y. S.; Gao, M.; Zhang, Z. J.; Si, C. L.; Li, H. P.; Ji, X. Y.; Liang, J. J. Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett. 2022, 22, 3784–3792.

[31]

Dong, Y.; Wang, L.; Xia, N.; Wang, Y.; Wang, S. J.; Yang, Z. X.; Jin, D. D.; Du, X. Z.; Yu, E.; Pan, C. F. et al. Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior. Nano Energy 2021, 88, 106254.

[32]

Wu, L. J.; Chauhan, I.; Tadesse, Y. A novel soft actuator for the musculoskeletal system. Adv. Mater. Technol. 2018, 3, 1700359.

[33]

Baumgartner, M.; Hartmann, F.; Drack, M.; Preninger, D.; Wirthl, D.; Gerstmayr, R.; Lehner, L.; Mao, G. Y.; Pruckner, R.; Demchyshyn, S. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 2020, 19, 1102–1109.

[34]

Zhang, Y. F.; Zhang, N. B.; Hingorani, H.; Ding, N. Y.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G. Y.; Ge, Q. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 2019, 29, 1806698.

[35]

Zou, M.; Li, S. T.; Hu, X. Y.; Leng, X. Q.; Wang, R.; Zhou, X.; Liu, Z. F. Progresses in tensile, torsional, and multifunctional soft actuators. Adv. Funct. Mater. 2021, 31, 2007437.

[36]

Liu, Y.; Ji, X. Y.; Liang, J. J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. npj Flex. Electron. 2021, 5, 11.

[37]

Liu, Y.; Fan, X. Q.; Feng, W. M.; Shi, X. L.; Li, F. C.; Wu, J. H.; Ji, X. Y.; Liang, J. J. An in situ and rapid self-healing strategy enabling a stretchable nanocomposite with extremely durable and highly sensitive sensing features. Mater. Horiz. 2021, 8, 250–258.

[38]

Chen, K.; He, J. Z.; Zhang, D.; You, L. Y.; Li, X. F.; Wang, H. Y.; Mei, J. G. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 2021, 21, 4500–4507.

[39]

Yuan, Z. Y.; Zhou, Y. K.; Qiao, Z.; Aik, C. E.; Tu, W. C.; Wu, X. Q.; Chen, Y. C. Stimulated chiral light-matter interactions in biological microlasers. ACS Nano 2021, 15, 8965–8975.

[40]

Wang, X. F.; Chen, X. L.; Zhou, Y. H.; Park, C.; An, C.; Zhou, Y.; Zhang, R. R.; Gu, C. C.; Yang, W. G.; Yang, Z. R. Pressure-induced iso-structural phase transition and metallization in WSe2. Sci. Rep. 2017, 7, 46694.

[41]

Salitra, G.; Hodes, G.; Klein, E.; Tenne, R. Highly oriented WSe2 thin films prepared by selenization of evaporated WO3. Thin Solid Films 1994, 245, 180–185.

Nano Research
Pages 1313-1319
Cite this article:
Su Z, Zhao Y, Huang Y, et al. Light-driven soft actuator based on graphene and WSe2 nanosheets composite for multimodal motion and remote manipulation. Nano Research, 2023, 16(1): 1313-1319. https://doi.org/10.1007/s12274-022-4827-z
Topics:

1054

Views

23

Crossref

20

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 05 June 2022
Revised: 10 July 2022
Accepted: 26 July 2022
Published: 31 August 2022
© Tsinghua University Press 2022
Return