Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Remote controlled soft actuators have attracted ever-increasing interest in industrial, medical, robotics, and engineering fields. Soft actuators are charming than normal tools in executing dedicate tasks due to small volume and flexible body they have. However, it remains a challenge to design soft actuator that can adapt to multi-environments under remote stimuli with promising nano materials. Herein, we have developed a kind of near-infrared laser driven soft actuators with multi locomotive modes based on WSe2 and graphene nanosheets heterojunction. Different locomotion modes are driven by photothermal effect induced deformation to adapt to different working conditions. Moreover, the specially designed gripper driven by pulsed laser can lift a heavy load which is four times of its weight. This work broadens the choice of advanced nanomaterials for photothermal conversion of soft actuators. It is promising to realize applications including photothermal therapy and complex environment detection through the combination of the intelligent robot design and optical fiber system.
Kaspar, C.; Ravoo, B. J.; Van Der Wiel, W. G.; Wegner, S. V.; Pernice, W. H. P. The rise of intelligent matter. Nature 2021, 594, 345–355.
Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.
Khodambashi, R.; Alsaid, Y.; Rico, R.; Marvi, H.; Peet, M. M.; Fisher, R. E.; Berman, S.; He, X. M.; Aukes, D. M. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater. 2021, 33, 2005906.
Rafsanjani, A.; Zhang, Y. R.; Liu, B. Y.; Rubinstein, S. M.; Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 2018, 3, eaar7555.
He, Q. G.; Wang, Z. J.; Wang, Y.; Minori, A.; Tolley, M. T.; Cai, S. Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv. 2019, 5, eaax5746.
Zhang, J. C.; Ren, Z. Y.; Hu, W. Q.; Soon, R. H.; Yasa, I. C.; Liu, Z. M.; Sitti, M. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 2021, 6, eabf0112.
Nie, Z. Z.; Zuo, B.; Wang, M.; Huang, S.; Chen, X. M.; Liu, Z. Y.; Yang, H. Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 2021, 12, 2334.
Cheng, Y. C.; Lu, H. C.; Lee, X.; Zeng, H.; Priimagi, A. Kirigami-based light-induced shape-morphing and locomotion. Adv. Mater. 2020, 32, 1906233.
Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V. H.; Zhou, Q. T.; Nam, S.; Oh, I. K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797.
Xiao, J. L.; Zhou, T.; Yao, N.; Ma, S. Q.; Pan, C. X. Y.; Wang, P.; Fu, H. R.; Liu, H. T.; Pan, J.; Yu, L. T. et al. Optical fibre taper-enabled waveguide photoactuators. Nat. Commun. 2022, 13, 363.
Hu, Y.; Ji, Q. X.; Huang, M. J.; Chang, L. F.; Zhang, C. C.; Wu, G.; Zi, B.; Bao, N. Z.; Chen, W.; Wu, Y. C. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angew. Chem., Int. Ed. 2021, 60, 20511–20517.
Li, Z. W.; Myung, N. V.; Yin, Y. D. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Robot. 2021, 6, eabi4523.
Zhang, M. C.; Shahsavan, H.; Guo, Y. B.; Pena-Francesch, A.; Zhang, Y. Y.; Sitti, M. Liquid-crystal-elastomer-actuated reconfigurable microscale Kirigami metastructures. Adv. Mater. 2021, 33, 2008605.
Cai, G. F.; Ciou, J. H.; Liu, Y. Z.; Jiang, Y.; Lee, P. S. Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 2019, 5, eaaw7956.
Ying, Y. L.; Plutnar, J.; Pumera, M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small 2021, 17, 2100294.
Banerjee, S. S.; Arief, I.; Berthold, R.; Wiese, M.; Bartholdt, M.; Ganguli, D.; Mitra, S.; Mandal, S.; Wallaschek, J.; Raatz, A. et al. Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator. Appl. Mater. Today 2021, 25, 101219.
Chen, Y. H.; Yang, J. J.; Zhang, X.; Feng, Y. Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.
Fan, X. Q.; Ding, Y.; Liu, Y.; Liang, J. J.; Chen, Y. S. Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 2019, 13, 8124–8134.
Gao, D. C.; Lin, M. F.; Xiong, J. Q.; Li, S. H.; Lou, S. N.; Liu, Y. Z.; Ciou, J. H.; Zhou, X. R.; Lee, P. S. Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers. Nanoscale Horiz. 2020, 5, 730–738.
Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Func. Mater. 2018, 28, 1802235.
Xiang, S. L.; Su, Y. X.; Yin, H.; Li, C.; Zhu, M. Q. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 2021, 85, 105965.
Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453.
Yang, Y. Y.; Liu, Y. T.; Shen, Y. J. Plasmonic-assisted graphene oxide films with enhanced photothermal actuation for soft robots. Adv. Funct. Mater. 2020, 30, 1910172.
Da Cunha, M. P.; Ambergen, S.; Debije, M. G.; Homburg, E. F. G. A.; Den Toonder, J. M. J.; Schenning, A. P. H. J. A soft transporter robot fueled by light. Adv. Sci. 2020, 7, 1902842.
Hu, Y.; Yang, L. L.; Yan, Q. Y.; Ji, Q. X.; Chang, L. F.; Zhang, C. C.; Yan, J.; Wang, R. R.; Zhang, L.; Wu, G. et al. Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 2021, 15, 5294–5306.
Zhu, Y.; Wang, Y. J.; Williams, G. R.; Fu, L. Y.; Wu, J. J.; Wang, H.; Liang, R. Z.; Weng, X. S.; Wei, M. Multicomponent transition metal dichalcogenide nanosheets for imaging-guided photothermal and chemodynamic therapy. Adv. Sci. 2020, 7, 2000272.
Su, Z. W.; Zhao, Y. J.; Huang, Y. Q.; Lian, Y. B.; Xu, S. Q.; Bai, G. X. Bi-functional nanocomposite based on phosphor and carbon nanotubes for tumor ablation in a photothermal fiber system with temperature feedback. Chem. Eng. J. 2022, 436, 134994.
Zhou, Z.; Li, B. W.; Shen, C.; Wu, D.; Fan, H. C.; Zhao, J. Q.; Li, H.; Zeng, Z. Y.; Luo, Z. M.; Ma, L. F. et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. Small 2020, 16, 2004173.
Liu, L.; Liu, M. H.; Deng, L. L.; Lin, B. P.; Yang, H. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property. J. Am. Chem. Soc. 2017, 139, 11333–11336.
Liu, Y.; Xu, X.; Wei, Y.; Chen, Y. S.; Gao, M.; Zhang, Z. J.; Si, C. L.; Li, H. P.; Ji, X. Y.; Liang, J. J. Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett. 2022, 22, 3784–3792.
Dong, Y.; Wang, L.; Xia, N.; Wang, Y.; Wang, S. J.; Yang, Z. X.; Jin, D. D.; Du, X. Z.; Yu, E.; Pan, C. F. et al. Multi-stimuli-response programmable soft actuators with site-specific and anisotropic deformation behavior. Nano Energy 2021, 88, 106254.
Wu, L. J.; Chauhan, I.; Tadesse, Y. A novel soft actuator for the musculoskeletal system. Adv. Mater. Technol. 2018, 3, 1700359.
Baumgartner, M.; Hartmann, F.; Drack, M.; Preninger, D.; Wirthl, D.; Gerstmayr, R.; Lehner, L.; Mao, G. Y.; Pruckner, R.; Demchyshyn, S. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 2020, 19, 1102–1109.
Zhang, Y. F.; Zhang, N. B.; Hingorani, H.; Ding, N. Y.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G. Y.; Ge, Q. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 2019, 29, 1806698.
Zou, M.; Li, S. T.; Hu, X. Y.; Leng, X. Q.; Wang, R.; Zhou, X.; Liu, Z. F. Progresses in tensile, torsional, and multifunctional soft actuators. Adv. Funct. Mater. 2021, 31, 2007437.
Liu, Y.; Ji, X. Y.; Liang, J. J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. npj Flex. Electron. 2021, 5, 11.
Liu, Y.; Fan, X. Q.; Feng, W. M.; Shi, X. L.; Li, F. C.; Wu, J. H.; Ji, X. Y.; Liang, J. J. An in situ and rapid self-healing strategy enabling a stretchable nanocomposite with extremely durable and highly sensitive sensing features. Mater. Horiz. 2021, 8, 250–258.
Chen, K.; He, J. Z.; Zhang, D.; You, L. Y.; Li, X. F.; Wang, H. Y.; Mei, J. G. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 2021, 21, 4500–4507.
Yuan, Z. Y.; Zhou, Y. K.; Qiao, Z.; Aik, C. E.; Tu, W. C.; Wu, X. Q.; Chen, Y. C. Stimulated chiral light-matter interactions in biological microlasers. ACS Nano 2021, 15, 8965–8975.
Wang, X. F.; Chen, X. L.; Zhou, Y. H.; Park, C.; An, C.; Zhou, Y.; Zhang, R. R.; Gu, C. C.; Yang, W. G.; Yang, Z. R. Pressure-induced iso-structural phase transition and metallization in WSe2. Sci. Rep. 2017, 7, 46694.
Salitra, G.; Hodes, G.; Klein, E.; Tenne, R. Highly oriented WSe2 thin films prepared by selenization of evaporated WO3. Thin Solid Films 1994, 245, 180–185.