AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding

Xinwei TangJiangtao LuoZhiwei HuShijie LuXiaoyi LiuShuangshuang LiXu ZhaoZihang ZhangQianqian LanPiming MaZicheng Wang( )Tianxi Liu( )
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
Show Author Information

Graphical Abstract

Ultrathin, flexible, and oxidation-resistant MXene-based graphene (M-rGX) porous film is fabricated by electrostatic self-assembly between MXene and graphene oxide (GO) nanosheets, and subsequentlythermal annealing under hydrogen-argon atmosphere. The rapid breakaway of functional groups on GO and MXene sheets induces formation of porous conductive network in film, facilitating efficient shielding for incident electromagnetic waves. More importantly, the effective removal of functional groups on MXene conspicuously improves the oxidation resistance of the film, endowing it with excellent durability in electromagnetic interference (EMI) shielding performance.

Abstract

Designing and fabricating efficient electromagnetic interference (EMI) shielding materials becomes a significant and urgent concern. Hence, a novel ultrathin, flexible, and oxidation-resistant MXene-based graphene (M-rGX) porous film is successfully fabricated by electrostatic self-assembly between MXene and graphene oxide (GO) nanosheets, and subsequently thermal annealing under hydrogen-argon atmosphere. The rapid breakaway of functional groups on GO and MXene sheets induces formation of porous conductive network in film, thereby facilitating efficient shielding for incident electromagnetic waves. The optimal absolute shielding effectiveness (SSE/t) value of 76,422 dB·cm2·g−1 can be achieved at a thinner thickness of 15 μm. More importantly, the effective removal of functional groups on MXene conspicuously improves the oxidation resistance of the film, endowing it with an excellent durability (12 months) in EMI shielding performance.

Electronic Supplementary Material

Video
12274_2022_4841_MOESM2_ESM.mp4
Download File(s)
12274_2022_4841_MOESM1_ESM.pdf (486.5 KB)

References

[1]

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

[2]

Wang, Z. C.; Wei, R. B.; Liu. X. B. Fluffy and ordered graphene multilayer films with improved electromagnetic interference shielding over X-band. ACS Appl. Mater. Interfaces 2017, 9, 22408–22419.

[3]

Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compo. Commun. 2021, 27, 100823.

[4]

Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

[5]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[6]

Xu, D. W.; Chen, W. H.; Liu, P. J. Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Compos. Sci. Technol. 2020, 199, 108355.

[7]

Wang, L.; Shi, X. T.; Zhang, J. L.; Zhang, Y. L.; Gu, J. W. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 2020, 52, 119–126.

[8]
Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res., in press, https://doi.org/10.1007/s12274-022-4414-3.
[9]

Liu, Q.; Tang, L.; Li, J. Z.; Chen, Y.; Xu, Z. K.; Li, J. T.; Chen, X. Y.; Meng, F. B. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance. J. Mater. Sci. Technol. 2022, 130, 166–175.

[10]

Li, J. Z.; Xu, Z. K.; Li, T.; Zhi, D. D.; Chen, Y.; Lu, Q. H.; Wang, J. J.; Liu, Q.; Meng, F. B. Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Compos. Part B Eng. 2022, 231, 109565.

[11]

Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

[12]

Iqbal, A.; Sambyal, P.; Koo. C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[13]

Song, P.; Liu, B.; Qiu, H.; Shi, X. T.; Cao, D. P.; Gu, J. W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compo. Commun. 2021, 24, 100653.

[14]

Liang, L. Y.; Yao, C.; Yan, X.; Feng, Y. Z.; Hao, X.; Zhou, B.; Wang, Y. M.; Ma, J. M.; Liu, C. T.; Shen, C. Y. High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J. Mater. Chem. A 2021, 9, 24560–24570.

[15]

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

[16]

Ma, W. J.; Cai, W. R.; Chen, W. H.; Liu, P. J.; Wang, J. F.; Liu, Z. X. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 130729.

[17]

Luo, S. L.; Xiang, T. T.; Dong, J. W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Feng, Y. Z. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 129, 127–134.

[18]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[19]

Li, S. S.; Tang, X. W.; Zhao, X.; Lu, S. J.; Luo, J. T.; Chai, Z. Y.; Ma, T. T.; Lan, Q. Q.; Ma, P. M.; Dong, W. F. et al. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 2023, 133, 238–248.

[20]

Chae, Y.; Kim, S. J.; Cho, S. Y.; Choi, J.; Maleski, K.; Lee, B. J.; Jung, H. T.; Gogotsi, Y.; Lee, Y.; Ahn, C. W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale 2019, 11, 8387–8393.

[21]

Lotft, R.; Naguib, M.; Yilmaz, D. E.; Nanda, J.; Van Duin, A. C. T. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 2018, 6, 12733–12743.

[22]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[23]

Weng, C. X.; Xing, T. L.; Jin, H.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105927.

[24]

Cheng, H. R.; Pan, Y. M.; Chen, Q.; Che, R. C.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 2021, 4, 505–513.

[25]

Ma, W. J.; Cai, W. R.; Chen, W. H.; Liu, P. J.; Wang, J. F.; Liu, Z. X. Microwave-induced segregated composite network with MXene as interfacial solder for ultra-efficient electromagnetic interference shielding and anti-dripping. Chem. Eng. J. 2021, 425, 131699.

[26]

Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

[27]

Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

[28]

Liu, H. G.; Wang, Z.; Wang, J.; Yang, Y. J.; Wu, S. Q.; You, C. Y.; Tian, N.; Li, Y. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale 2022, 14, 9218–9247.

[29]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[30]

Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

[31]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[32]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng W. G. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

[33]

Lu, Z. Q.; Jia, F. F.; Zhuo, L. H.; Ning, D. D.; Gao, K.; Xie, F. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B Eng. 2021, 217, 108853.

[34]

Lee, Y.; Kim, S. J.; Kim, Y. J.; Lim, Y.; Chae, Y.; Lee, B. J.; Kim, Y. T.; Han, H.; Gogotsi, Y.; Ahn, C. W. Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 2020, 8, 573–581.

[35]

Wang, Z. C.; Wei, R. B.; Gu, J. W.; Liu, H.; Liu, C. T.; Luo, C. J.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z. H. et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 2018, 139, 1126–1135.

[36]

Yang, W. J.; Ding, H.; Liu, T. X.; Ou, R. X.; Lin, J. Y.; Puglia, D.; Xu, P. W.; Wang, Q. W.; Dong, W. F.; Du, M. L. et al. Design of intrinsically flame-retardant vanillin-based epoxy resin for thermal-conductive epoxy/graphene aerogel composites. ACS Appl. Mater. Interfaces 2021, 13, 59341–59351.

[37]

Wang, Z. C.; Wei, R. B.; Liu, X. B. Facile fabrication of multilayer films of graphene oxide/copper phthalocyanine with high dielectric properties. RSC Adv. 2015, 5, 88306–88310.

[38]

Wu, G. H.; Li, T. T.; Wang, Z. L.; Li, M. Z.; Wang, B. W.; Dong, A. G. Molecular ligand-mediated assembly of multicomponent nanosheet superlattices for compact capacitive energy storage. Angew. Chem., Int. Ed. 2020, 59, 20628–20635.

[39]

Lan, Q. Q.; Liu, L. Y.; Wu, Y. C.; Feng, C.; Ou, K. Q.; Wang, Z. C.; Huang, Y. P.; Lv, Y.; Miao, Y. E.; Liu, T. X. Porous reduced graphene oxide/phenolic nanomesh membranes with ternary channels for ultrafast water purification. Compo. Commun. 2022, 33, 101216.

[40]

Lan, Q. Q.; Feng, C.; Wang, Z. C.; Li, L.; Wang, Y.; Liu, T. X. Chemically laminating graphene oxide nanosheets with phenolic nanomeshes for robust membranes with fast desalination. Nano Lett. 2021, 21, 8236–8243.

[41]

Lu, Z.; Wang, S.; Fang, Y.; Wang, W. J.; Gao, X. H.; Zhao, R.; Xue, W. D. Rational design of three-dimensional boron and nitrogen co-doped carbon nanotubes encapsulated with nickel nanoparticles composite for enhance electromagnetic wave absorbing. Appl. Surf. Sci. 2022, 583, 152505.

[42]

Li, Z. Y.; Wang, L. B.; Sun, D. D.; Zhang, Y. D.; Liu, B. Z.; Hu, Q. K.; Zhou, A. G. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 2015, 191, 33–40.

[43]

Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

[44]

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

[45]

Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

[46]

Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

[47]

Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

[48]

Zhou, B.; Han, G. J.; Zhang, Z.; Li, Z. Y.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 2021, 184, 562–570.

[49]

Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

[50]

Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154–160.

[51]

Song, Q.; Ye, F.; Yin, X. W.; Li, W.; Li, H. J.; Liu, Y. S.; Li, K. Z.; Xie, K. Y.; Li, X. H.; Fu, Q. G. et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1701583.

[52]

Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534.

[53]

Xu, H. L.; Yin, X. W.; Li, X. L.; Li, M. H.; Liang, S.; Zhang, L. T.; Cheng, L. F. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207.

[54]

Li, Y.; Shen, B.; Pei, X. L.; Zhang, Y. G.; Yi, D.; Zhai, W. T.; Zhang, L. H.; Wei, X. C.; Zheng, W. G. Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 2016, 100, 375–385.

[55]

Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

[56]

Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069.

[57]

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

[58]

Zhu, S.; Peng, S. P.; Qiang, Z.; Ye, C. H.; Zhu, M. F. Cryogenic-environment resistant, highly elastic hybrid carbon foams for pressure sensing and electromagnetic interference shielding. Carbon 2022, 193, 258–271.

Nano Research
Pages 1755-1763
Cite this article:
Tang X, Luo J, Hu Z, et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Research, 2023, 16(1): 1755-1763. https://doi.org/10.1007/s12274-022-4841-1
Topics:
Part of a topical collection:

1468

Views

49

Crossref

51

Web of Science

51

Scopus

2

CSCD

Altmetrics

Received: 29 June 2022
Revised: 29 July 2022
Accepted: 30 July 2022
Published: 07 September 2022
© Tsinghua University Press 2022
Return