AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Emulsion confined block copolymer self-assembly: Recent progress and prospect

Yilin LiuFangfang KeYuanchao LiYi ShiZhen Zhang( )Yongming Chen( )
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
Show Author Information

Graphical Abstract

Through the combination of emulsification and self-assembly of block copolymers, different materials with exotic architectures and functions could be combined within an entity.

Abstract

In the past few decades, significant progress in block copolymer self-assembly has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need block copolymer self-assembly based nanoplatforms having more complex structures for specific multimodal or multiplexed applications. Through the combination of emulsification and self-assembly of the block copolymer, different materials with exotic architectures and functions could be combined within an entity, such as controlled vesicles, Janus particles, and composite particles which are more like ideal nanoplatforms. Various designs can show their different desired properties depending upon the application situation, including molecular delivery, surfactants, and multicolor encoding. This review will provide a complete summary of the optimization and the synthesis method for the recently designed emulsion confined block copolymer assemblies, and also the challenges and limitations this method faces, and the potential solutions in this field.

References

[1]

Wong, C. K.; Qiang, X. L.; Müller, A. H. E.; Gröschel, A. H. Self-assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci. 2020, 102, 101211.

[2]

Wyman, I.; Njikang, G.; Liu, G. J. When emulsification meets self-assembly: The role of emulsification in directing block copolymer assembly. Prog. Polym. Sci. 2011, 36, 1152–1183.

[3]

Wei, W. B.; Bai, F.; Fan, H. Y. Surfactant-assisted cooperative self-assembly of nanoparticles into active nanostructures. iScience 2019, 11, 272–293.

[4]

Kim, M. P.; Yi, G. R. Nanostructured colloidal particles by confined self-assembly of block copolymers in evaporative droplets. Front. Mater. 2015, 2, 45.

[5]

Zhang, Z.; Jayakumar, M. K. G.; Zheng, X.; Shikha, S.; Zhang, Y.; Bansal, A.; Poon, D. J. J.; Chu, P. L.; Yeo, E. L. L.; Chua, M. L. K. et al. Upconversion superballs for programmable photoactivation of therapeutics. Nat. Commun. 2019, 10, 4586.

[6]

Yan, N.; Zhu, Y. T.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183–13195.

[7]

Wu, J.; Ma, G. H. Recent studies of Pickering emulsions: Particles make the difference. Small 2016, 12, 4633–4648.

[8]

Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100th anniversary of macromolecular science viewpoint: Block copolymer particles: Tuning shape, interfaces, and morphology. ACS Macro Lett. 2020, 9, 306–317.

[9]

Qiang, X. L.; Steinhaus, A.; Chen, C.; Chakroun, R.; Gröschel, A. H. Template-free synthesis and selective filling of Janus nanocups. Angew. Chem., Int. Ed. 2019, 58, 7122–7126.

[10]

Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496, 173–190.

[11]

Zhao, C. X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1420–1446.

[12]

Zhang, Z.; Chen, Y. M.; Zhang, Y. Self-assembly of upconversion nanoparticles based materials and their emerging applications. Small 2022, 18, 2103241.

[13]

Mwangi, W. W.; Lim, H. P.; Low, L. E.; Tey, B. T.; Chan, E. S. Food-grade pickering emulsions for encapsulation and delivery of bioactives. Trends Food Sci. Technol. 2020, 100, 320–332.

[14]

Deng, R. H.; Liang, F. X.; Zhu, J. T.; Yang, Z. Z. Recent advances in the synthesis of Janus nanomaterials of block copolymers. Mater. Chem. Front. 2017, 1, 431–443.

[15]

Deng, R. H.; Liang, F. X.; Qu, X. Z.; Wang, Q.; Zhu, J. T.; Yang, Z. Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750–755.

[16]

Deng, R. H.; Liang, F. X.; Zhou, P.; Zhang, C. L.; Qu, X. Z.; Wang, Q.; Li, J. L.; Zhu, J. T.; Yang, Z. Z. Janus nanodisc of diblock copolymers. Adv. Mater. 2014, 26, 4469–4472.

[17]

Ku, K. H.; Kim, M. P.; Paek, K.; Shin, J. M.; Chung, S.; Jang, S. G.; Chae, W. S.; Yi, G. R.; Kim, B. J. Multicolor emission of hybrid block copolymer-quantum dot microspheres by controlled spatial isolation of quantum dots. Small 2013, 9, 2667–2672.

[18]

Zhang, Z.; Jayakumar, M. K. G.; Shikha, S.; Zhang, Y.; Zheng, X.; Zhang, Y. Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 12549–12556.

[19]

Reisch, A.; Klymchenko, A. S. Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging. Small 2016, 12, 1968–1992.

[20]

Deng, R. H.; Xu, J. P.; Yi, G. R.; Kim, J. W.; Zhu, J. T. Responsive colloidal polymer particles with ordered mesostructures. Adv. Funct. Mater. 2021, 31, 2008169.

[21]

Wang, D.; Yang, D. L.; Huang, C.; Huang, Y. Y.; Yang, D. Z.; Zhang, H.; Liu, Q.; Tang, T.; El-Din, M. G.; Kemppi, T. et al. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review. Fuel 2021, 286, 119390.

[22]

Linke, C.; Drusch, S. Pickering emulsions in foods—Opportunities and limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 1971–1985.

[23]

Umar, A. A.; Saaid, I. B. M.; Sulaimon, A. A.; Pilus, R. B. M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690.

[24]

McClements, D. J.; Jafari, S. M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79.

[25]

Jiang, H.; Sheng, Y. F.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15.

[26]

Zhu, F. Starch based pickering emulsions: Fabrication, properties, and applications. Trends Food Sci. Technol. 2019, 85, 129–137.

[27]

Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Controlled Release 2019, 309, 302–332.

[28]

Ortiz, D. G.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current trends in pickering emulsions: Particle morphology and applications. Engineering 2020, 6, 468–482.

[29]

Yi, C. L.; Yang, Y. Q.; Liu, B.; He, J.; Nie, Z. H. Polymer-guided assembly of inorganic nanoparticles. Chem. Soc. Rev. 2020, 49, 465–508.

[30]

Qiang, X. L.; Chakroun, R.; Janoszka, N.; Gröschel, A. H. Self-assembly of multiblock copolymers. Isr. J. Chem. 2019, 59, 945–958.

[31]

Atanase, L. I.; Riess, G. Self-assembly of block and graft copolymers in organic solvents: An overview of recent advances. Polymers 2018, 10, 62.

[32]

Wang, C.; Wang, Z. Q.; Zhang, X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45, 608–618.

[33]

Mai, Y. Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

[34]

Zhang, K. K.; Jiang, M.; Chen, D. Y. Self-assembly of particles—The regulatory role of particle flexibility. Prog. Polym. Sci. 2012, 37, 445–486.

[35]

Wu, Y. Y.; Cheng, G. S.; Katsov, K.; Sides, S. W.; Wang, J. F.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Composite mesostructures by nano-confinement. Nat. Mater. 2004, 3, 816–822.

[36]

Yu, B.; Sun, P. C.; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Li, B. H.; Shi, A. C. Confinement-induced novel morphologies of block copolymers. Phys. Rev. Lett. 2006, 96, 138306.

[37]

Shin, K.; Xiang, H. Q.; Moon, S. I.; Kim, T.; McCarthy, T. J.; Russell, T. P. Curving and frustrating flatland. Science 2004, 306, 76.

[38]

Wang, Y.; Tong, L.; Steinhart, M. Swelling-induced morphology reconstruction in block copolymer nanorods: Kinetics and impact of surface tension during solvent evaporation. ACS Nano 2011, 5, 1928–1938.

[39]

Li, Y. Q.; Bastakoti, B. P.; Malgras, V.; Li, C. L.; Tang, J.; Kim, J. H.; Yamauchi, Y. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew. Chem., Int. Ed. 2015, 54, 11073–11077.

[40]

Sanwaria, S.; Horechyy, A.; Wolf, D.; Chu, C. Y.; Chen, H. L.; Formanek, P.; Stamm, M.; Srivastava, R.; Nandan, B. Helical packing of nanoparticles confined in cylindrical domains of a self-assembled block copolymer structure. Angew. Chem., Int. Ed. 2014, 53, 9090–9093.

[41]

Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

[42]

Orilall, M. C.; Wiesner, U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem. Soc. Rev. 2011, 40, 520–535.

[43]

Zhang, L. F.; Eisenberg, A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc. 1996, 118, 3168–3181.

[44]

Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170.

[45]

Sun, J. T.; Hong, C. Y.; Pan, C. Y. Formation of the block copolymer aggregates via polymerization-induced self-assembly and reorganization. Soft Matter 2012, 8, 7753–7767.

[46]

Tan, H.; Wang, Z. G.; Li, J. H.; Pan, Z. C.; Ding, M. M.; Fu, Q. An approach for the sphere-to-rod transition of multiblock copolymer micelles. ACS Macro Lett. 2013, 2, 146–151.

[47]

Lv, L. L.; Zhang, Z.; Li, H. Y.; Huang, X. Y.; Chen, D. Y. Endowing polymeric assemblies with unique properties and behaviors by incorporating versatile nanogels in the shell. ACS Macro Lett. 2019, 8, 1222–1226.

[48]

Zhang, Z.; Li, H. D.; Huang, X. Y.; Chen, D. Y. Solution-based thermodynamically controlled conversion from diblock copolymers to Janus nanoparticles. ACS Macro Lett. 2017, 6, 580–585.

[49]

Zhang, Z.; Zhou, C. M.; Dong, H. Y.; Chen, D. Y. Solution-based fabrication of narrow-disperse ABC three-segment and Θ-shaped nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 6182–6186.

[50]

Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–277.

[51]

Förster, S.; Zisenis, M.; Wenz, E.; Antonietti, M. Micellization of strongly segregated block copolymers. J. Chem. Phys. 1996, 104, 9956–9970.

[52]

Soo, P. L.; Eisenberg, A. Preparation of block copolymer vesicles in solution. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 923–938.

[53]

Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736.

[54]

Lu, Y. Q.; Lin, J. P.; Wang, L. Q.; Zhang, L. S.; Cai, C. H. Self-assembly of copolymer micelles: Higher-level assembly for constructing hierarchical structure. Chem. Rev. 2020, 120, 4111–4140.

[55]

Xie, G. J.; Martinez, M. R.; Olszewski, M.; Sheiko, S. S.; Matyjaszewski, K. Molecular bottlebrushes as novel materials. Biomacromolecules 2019, 20, 27–54.

[56]

D'Agosto, F.; Rieger, J.; Lansalot, M. RAFT-mediated polymerization-induced self-assembly. Angew. Chem., Int. Ed. 2020, 59, 8368–8392.

[57]

Feng, H. B.; Lu, X. Y.; Wang, W. Y.; Kang, N. G.; Mays, J. W. Block copolymers: Synthesis, self-assembly, and applications. Polymers 2017, 9, 494.

[58]

Yi, Y.; Fan, X. H.; Wan, X. H.; Li, L.; Zhao, N.; Chen, X. F.; Xu, J.; Zhou, Q. F. ABA type triblock copolymer based on mesogen-jacketed liquid crystalline polymer: Design, synthesis, and potential as thermoplastic elastomer. Macromolecules 2004, 37, 7610–7618.

[59]

Matsen, M. W.; Schick, M. Lamellar phase of a symmetric triblock copolymer. Macromolecules 1994, 27, 187–192.

[60]

Wang, Z.; Li, B. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Self-assembly of cylinder-forming ABA triblock copolymers under cylindrical confinement. Macromol. Theory Simul. 2008, 17, 301–312.

[61]

Muñoz-Bonilla, A.; Cerrada, M. L.; Fernández-García, M. Self-assembly of ATRP-synthesized PCH-b-PtBA-b-PCH triblock copolymers observed by time-resolved SAXS. Macromol. Chem. Phys. 2007, 208, 2654–2664.

[62]

Chen, J. H.; Frisbie, C. D.; Bates, F. S. Lithium perchlorate-doped poly(styrene-b-ethylene oxide-b-styrene) lamellae-forming triblock copolymer as high capacitance, smooth, thin film dielectric. J. Phys. Chem. C 2009, 113, 3903–3908.

[63]

Zheng, W.; Wang, Z. G. Morphology of ABC triblock copolymers. Macromolecules 1995, 28, 7215–7223.

[64]

Fryd, M. M.; Mason, T. G. Advanced nanoemulsions. Annu. Rev. Phys. Chem. 2012, 63, 493–518.

[65]

Xu, J. P.; Jiang, W. Confinement of polymer-tethered gold nanowires in polymeric colloids. Macromolecules 2014, 47, 2396–2403.

[66]

Yang, Y.; Wang, Y. L.; Jin, S. M.; Xu, J. P.; Hou, Z. Y.; Ren, J. L.; Wang, K.; Lee, E.; Zhang, L. B.; Zhang, Y. F. et al. 3D confined assembly of polymer-tethered gold nanoparticles into size-segregated structures. Mater. Chem. Front. 2019, 3, 209–215.

[67]

Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y. T.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646.

[68]

Xu, J. P.; Wang, K.; Li, J. Y.; Zhou, H. M.; Xie, X. L.; Zhu, J. T. ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules 2015, 48, 2628–2636.

[69]

Deng, R. H.; Liang, F. X.; Li, W. K.; Liu, S. Q.; Liang, R. J.; Cai, M. L.; Yang, Z. Z.; Zhu, J. T. Shaping functional nano-objects by 3D confined supramolecular assembly. Small 2013, 9, 4099–4103.

[70]

Deng, R. H.; Liu, S. Q.; Li, J. Y.; Liao, Y. G.; Tao, J.; Zhu, J. T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889–1893.

[71]

Shi, A. C.; Li, B. H. Self-assembly of diblock copolymers under confinement. Soft Matter 2013, 9, 1398–1413.

[72]

Schmidt, B. V. K. J.; Wang, C. X.; Kraemer, S.; Connal, L. A.; Klinger, D. Highly functional ellipsoidal block copolymer nanoparticles: A generalized approach to nanostructured chemical ordering in phase separated colloidal particles. Polym. Chem. 2018, 9, 1638–1649.

[73]

Schmidt, B. V. K. J.; Elbert, J.; Scheid, D.; Hawker, C. J.; Klinger, D.; Gallei, M. Metallopolymer-based shape anisotropic nanoparticles. ACS Macro Lett. 2015, 4, 731–735.

[74]

Zhu, Y. T.; Li, R. K. Y.; Jiang, W. A Monte Carlo simulation for the micellization of ABC 3-miktoarm star terpolymers in a selective solvent. Chem. Phys. 2006, 327, 137–143.

[75]

Kong, W. X.; Jiang, W.; Zhu, Y. T.; Li, B. H. Highly symmetric patchy multicompartment nanoparticles from the self-assembly of ABC linear terpolymers in C-selective solvents. Langmuir 2012, 28, 11714–11724.

[76]

Zhu, Y. T.; Yu, H. Z.; Wang, Y. M.; Cui, J.; Kong, W. X.; Jiang, W. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation. Soft Matter 2012, 8, 4695–4707.

[77]

Kong, W. X.; Li, B. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers. J. Am. Chem. Soc. 2009, 131, 8503–8512.

[78]

He, X. H.; Song, M.; Liang, H. J.; Pan, C. Y. Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. J. Chem. Phys. 2001, 114, 10510–10513.

[79]

Fraaije, J. G. E. M.; Sevink, G. J. A. Model for pattern formation in polymer surfactant nanodroplets. Macromolecules 2003, 36, 7891–7893.

[80]

Yu, B.; Li, B. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Self-assembly of symmetric diblock copolymers confined in spherical nanopores. Macromolecules 2007, 40, 9133–9142.

[81]

Feng, J.; Liu, H. L.; Hu, Y. Micro-phase separation of diblock copolymer in a nanosphere: Dissipative particle dynamics approach. Fluid Phase Equilib. 2007, 261, 50–57.

[82]

Chen, P.; Liang, H. J.; Shi, A. C. Microstructures of a cylinder-forming diblock copolymer under spherical confinement. Macromolecules 2008, 41, 8938–8943.

[83]

Chi, P.; Wang, Z.; Li, B. H.; Shi, A. C. Soft confinement-induced morphologies of diblock copolymers. Langmuir 2011, 27, 11683–11689.

[84]

Lu, Z. H.; Liu, G. J.; Liu, F. T. Block copolymer microspheres containing intricate nanometer-sized segregation patterns. Macromolecules 2001, 34, 8814–8817.

[85]

Hamley, I. W. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog. Polym. Sci. 2009, 34, 1161–1210.

[86]

Fasolka, M. J.; Mayes, A. M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 2001, 31, 323–355.

[87]
Tsarkova, L.; Sevink, G. J. A.; Krausch, G. Nanopattern evolution in block copolymer films: Experiment, simulations and challenges. In Complex Macromolecular Systems I. Müller, A. H. E.; Schmidt, H. W. , Eds.; Springer: Berlin, 2010; pp 33–73.
[88]

Stewart-Sloan, C. R.; Thomas, E. L. Interplay of symmetries of block polymers and confining geometries. Eur. Polym. J. 2011, 47, 630–646.

[89]

Ogawa, Y.; Yamamoto, M.; Okada, H.; Yashiki, T.; Shimamoto, T. A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem. Pharm. Bull. 1988, 36, 1095–1103.

[90]

Discher, D. E.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967–973.

[91]

Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 2017, 64, 1–22.

[92]

Idrissi, M. E.; Meyer, C. E.; Zartner, L.; Meier, W. Nanosensors based on polymer vesicles and planar membranes: A short review. J. Nanobiotechnol. 2018, 16, 63.

[93]

Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: From polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599.

[94]

He, H. S.; Lu, Y.; Qi, J. P.; Zhu, Q. G.; Chen, Z. J.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019, 9, 36–48.

[95]

Kauscher, U.; Holme, M. N.; Björnmalm, M.; Stevens, M. M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv. Drug Deliv. Rev. 2019, 138, 259–275.

[96]

Kocak, G.; Tuncer, C.; Bütün, V. pH-responsive polymers. Polym. Chem. 2017, 8, 144–176.

[97]

Deirram, N.; Zhang, C. H.; Kermaniyan, S. S.; Johnston, A. P. R.; Such, G. K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 2019, 40, 1800917.

[98]

Lombardo, D.; Kiselev, M. A.; Caccamo, M. T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019, 2019, 3702518.

[99]

Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308, 537–541.

[100]

Zheng, R. H.; Liu, G. J. Water-dispersible oil-filled ABC triblock copolymer vesicles and nanocapsules. Macromolecules 2007, 40, 5116–5121.

[101]

Shim, J. W.; Kim, S. H.; Jeon, S. J.; Yang, S. M.; Yi, G. R. Microcapsules with tailored nanostructures by microphase separation of block copolymers. Chem. Mater. 2010, 22, 5593–5600.

[102]

Zhu, J. T.; Hayward, R. C. Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. Angew. Chem., Int. Ed. 2008, 47, 2113–2116.

[103]

Werner, J. G.; Lee, H.; Wiesner, U.; Weitz, D. A. Ordered mesoporous microcapsules from double emulsion confined block copolymer self-assembly. ACS Nano 2021, 15, 3490–3499.

[104]

Hayward, R. C.; Pochan, D. J. Tailored assemblies of block copolymers in solution: It is all about the process. Macromolecules 2010, 43, 3577–3584.

[105]

Zhu, J. T.; Ferrer, N.; Hayward, R. C. Tuning the assembly of amphiphilic block copolymers through instabilities of solvent/water interfaces in the presence of aqueous surfactants. Soft Matter 2009, 5, 2471–2478.

[106]

Fan, X. S.; Yang, J.; Loh, X. J.; Li, Z. B. Polymeric Janus nanoparticles: Recent advances in synthetic strategies, materials properties, and applications. Macromol. Rapid Commun. 2019, 40, 1800203.

[107]

Poggi, E.; Gohy, J. F. Janus particles: From synthesis to application. Colloid Polym. Sci. 2017, 295, 2083–2108.

[108]

Walther, A.; Müller, A. H. E. Janus particles. Soft Matter 2008, 4, 663–668.

[109]

Walther, A.; André, X.; Drechsler, M.; Abetz, V.; Müller, A. H. E. Janus discs. J. Am. Chem. Soc. 2007, 129, 6187–6198.

[110]

Liu, Y. F.; Abetz, V.; Müller, A. H. E. Janus cylinders. Macromolecules 2003, 36, 7894–7898.

[111]

Gao, L.; Zhang, K.; Chen, Y. M. Dumpling-like nanocomplexes of foldable Janus polymer sheets and spheres. ACS Macro Lett. 2012, 1, 1143–1145.

[112]

Deng, R. H.; Li, H.; Zhu, J. T.; Li, B. H.; Liang, F. X.; Jia, F.; Qu, X. Z.; Yang, Z. Z. Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules 2016, 49, 1362–1368.

[113]

Steinhaus, A.; Chakroun, R.; Müllner, M.; Nghiem, T. L.; Hildebrandt, M.; Gröschel, A. H. Confinement assembly of ABC triblock terpolymers for the high-yield synthesis of Janus nanorings. ACS Nano 2019, 13, 6269–6278.

[114]

Qiang, X. L.; Franzka, S.; Dai, X. Z.; Gröschel, A. H. Multicompartment microparticles of SBT triblock terpolymers through 3D confinement assembly. Macromolecules 2020, 53, 4224–4233.

[115]

Li, C.; Peng, H. J.; Cai, J. D.; Li, L.; Zhang, J.; Mai, Y. Y. Emulsion-guided controllable construction of anisotropic particles: Droplet size determines particle structure. Adv. Mater. 2021, 33, 2102930.

[116]

Yang, H.; Paek, K.; Kim, B. J. Efficient temperature sensing platform based on fluorescent block copolymer-functionalized graphene oxide. Nanoscale 2013, 5, 5720–5724.

[117]

Lee, S. Y.; Kim, S. H.; Kim, M. P.; Jeon, H. C.; Kang, H.; Kim, H. J.; Kim, B. J.; Yang, S. M. Freestanding and arrayed nanoporous microcylinders for highly active 3D SERS substrate. Chem. Mater. 2013, 25, 2421–2426.

[118]

Paek, K.; Chung, S.; Cho, C. H.; Kim, B. J. Fluorescent and pH-responsive diblock copolymer-coated core–shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chem. Commun. 2011, 47, 10272–10274.

[119]

Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2009, 2, 18–45.

[120]

Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J. Organic tandem solar cells: A review. Energy Environ. Sci. 2009, 2, 347–363.

[121]

Liu, R. C. Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials 2014, 7, 2747–2771.

[122]

Yang, J.; You, J. B.; Chen, C. C.; Hsu, W. C.; Tan, H. R.; Zhang, X. W.; Hong, Z. R.; Yang, Y. Plasmonic polymer tandem solar cell. ACS Nano 2011, 5, 6210–6217.

[123]

Leventis, H. C.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett. 2010, 10, 1253–1258.

[124]

Jeon, S. J.; Yang, S. M.; Kim, B. J.; Petrie, J. D.; Jang, S. G.; Kramer, E. J.; Pine, D. J.; Yi, G. R. Hierarchically structured colloids of diblock copolymers and Au nanoparticles. Chem. Mater. 2009, 21, 3739–3741.

[125]

Jang, S. G.; Audus, D. J.; Klinger, D.; Krogstad, D. V.; Kim, B. J.; Cameron, A.; Kim, S. W.; Delaney, K. T.; Hur, S. M.; Killops, K. L. et al. Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J. Am. Chem. Soc. 2013, 135, 6649–6657.

[126]

Ku, K. H.; Shin, J. M.; Kim, M. P.; Lee, C. H.; Seo, M. K.; Yi, G. R.; Jang, S. G.; Kim, B. J. Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles. J. Am. Chem. Soc. 2014, 136, 9982–9989.

[127]

Lee, J. P.; Chen, D. C.; Li, X. X.; Yoo, S.; Bottomley, L. A.; El-Sayed, M. A.; Park, S.; Liu, M. L. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. Nanoscale 2013, 5, 11620–11624.

[128]

Choi, S. J.; Kim, M. P.; Lee, S. J.; Kim, B. J.; Kim, I. D. Facile Au catalyst loading on the inner shell of hollow SnO2 spheres using Au-decorated block copolymer sphere templates and their selective H2S sensing characteristics. Nanoscale 2014, 6, 11898–11903.

[129]

Soukoulis, C. M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530.

[130]

Ramahi, O. M.; Almoneef, T. S.; AlShareef, M.; Boybay, M. S. Metamaterial particles for electromagnetic energy harvesting. Appl. Phys. Lett. 2012, 101, 173903.

[131]

Sheikholeslami, S. N.; Alaeian, H.; Koh, A. L.; Dionne, J. A. A metafluid exhibiting strong optical magnetism. Nano Lett. 2013, 13, 4137–4141.

[132]

Bönnemann, H.; Brinkmann, R.; Britz, P.; Endruschat, U.; Mörtel, R.; Paulus, U. A.; Feldmeyer, G. J.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Nanoscopic Pt-bimetal colloids as precursors for PEM fuel cell catalyst. J. New Mater. Electrochem. Syst. 2000, 3, 199–206.

[133]

Guczi, L.; Beck, A.; Horváth, A.; Koppány, Z.; Stefler, G.; Frey, K.; Sajó, I.; Geszti, O.; Bazin, D.; Lynch, J. AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. J. Mol. Catal. A: Chem. 2003, 204–205, 545–552.

[134]

Hayward, R. C.; Chmelka, B. F.; Kramer, E. J. Crosslinked poly(styrene)-block-poly(2-vinylpyridine) thin films as swellable templates for mesostructured silica and titania. Adv. Mater. 2005, 17, 2591–2595.

[135]

Chai, J. N.; Wang, D.; Fan, X. N.; Buriak, J. M. Assembly of aligned linear metallic patterns on silicon. Nat. Nanotechnol. 2007, 2, 500–506.

[136]

Yi, J. Q.; Li, H. D.; Jiang, L.; Zhang, K. K.; Chen, D. Y. Solution-based fabrication of a highly catalytically active 3D network constructed from 1D metal-organic framework-coated polymeric worm-like micelles. Chem. Commun. 2015, 51, 10162–10165.

[137]

Connal, L. A.; Lynd, N. A.; Robb, M. J.; See, K. A.; Jang, S. G.; Spruell, J. M.; Hawker, C. J. Mesostructured block copolymer nanoparticles: Versatile templates for hybrid inorganic/organic nanostructures. Chem. Mater. 2012, 24, 4036–4042.

[138]

Kim, M. P.; Kang, D. J.; Jung, D. W.; Kannan, A. G.; Kim, K. H.; Ku, K. H.; Jang, S. G.; Chae, W. S.; Yi, G. R.; Kim, B. J. Gold-decorated block copolymer microspheres with controlled surface nanostructures. ACS Nano 2012, 6, 2750–2757.

[139]

Kim, M. P.; Ku, K. H.; Kim, H. J.; Jang, S. G.; Yi, G. R.; Kim, B. J. Surface intaglio nanostructures on microspheres of gold-cored block copolymer spheres. Chem. Mater. 2013, 25, 4416–4422.

[140]

Wong, C. K.; Heidelmann, M.; Dulle, M.; Qiang, X. L.; Förster, S.; Stenzel, M. H.; Gröschel, A. H. Vesicular polymer hexosomes exhibit topological defects. J. Am. Chem. Soc. 2020, 142, 10989–10995.

[141]

Yang, Y.; Kim, H.; Xu, J. P.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L. B.; Liao, Y. G.; Park, H. G.; Yi, G. R. et al. Responsive block copolymer photonic microspheres. Adv. Mater. 2018, 30, 1707344.

[142]

Xu, J. P.; Li, J.; Yang, Y.; Wang, K.; Xu, N.; Li, J. Y.; Liang, R. J.; Shen, L.; Xie, X. L.; Tao, J. et al. Block copolymer capsules with structure-dependent release behavior. Angew. Chem., Int. Ed. 2016, 55, 14633–14637.

Nano Research
Pages 564-582
Cite this article:
Liu Y, Ke F, Li Y, et al. Emulsion confined block copolymer self-assembly: Recent progress and prospect. Nano Research, 2023, 16(1): 564-582. https://doi.org/10.1007/s12274-022-4850-0
Topics:

1319

Views

14

Crossref

11

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 31 May 2022
Revised: 09 July 2022
Accepted: 01 August 2022
Published: 12 September 2022
© Tsinghua University Press 2022
Return