Achieving efficient integration of cancer diagnosis and therapy is of great significance to human health, but the construction of a multifunctional intelligent therapy system still faces great challenges. In this study, we report an integrated multifunctional nanocomposite constructed by a simple modular assembly technology. The nanocomposites are composed of three different nanomaterials: Fe3O4, Au, and NaErF4:0.5%Tm@NaYF4 upconversion nanoparticles (UCNPs). In this design, Fe3O4 nanoparticles have nanozyme effect of peroxidase-like activity, which can react with H2O2 in the tumor microenvironment to generate hydroxyl radicals. Because of its magnetic properties, it can help the nanocomposites to aggregate under the induction of magnetic fields. Au nanoparticles exhibit nanozyme effect of glucose oxidase-like activity. It can catalyze the conversion of glucose to gluconic acid and H2O2. Ingeniously, the generated H2O2 provides a source of reactants for the reaction of the Fe3O4 nanozyme. In addition, the photothermal effect of Au nanoparticles under 808 nm irradiation further enhanced the nanozyme activity of Fe3O4 and Au nanoparticles. Besides, UCNPs can emit near-infrared (NIR)-II fluorescence under 808 nm irradiation, which can provide imaging-guided during cancer treatment. Then, the nanocomposites were further modified by poly(vinylpyrrolidone) (PVP) to obtain UCNPs/Au/Fe3O4-PVP with good biocompatibility and high-efficiency cancer treatment ability.
- Article type
- Year
- Co-author
In the past few decades, significant progress in block copolymer self-assembly has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need block copolymer self-assembly based nanoplatforms having more complex structures for specific multimodal or multiplexed applications. Through the combination of emulsification and self-assembly of the block copolymer, different materials with exotic architectures and functions could be combined within an entity, such as controlled vesicles, Janus particles, and composite particles which are more like ideal nanoplatforms. Various designs can show their different desired properties depending upon the application situation, including molecular delivery, surfactants, and multicolor encoding. This review will provide a complete summary of the optimization and the synthesis method for the recently designed emulsion confined block copolymer assemblies, and also the challenges and limitations this method faces, and the potential solutions in this field.