Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst

Junfeng Liu1()Qiuxia Wang1Tong Li1Yong Wang1Huaming Li1Andreu Cabot2,3 ()
Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
Show Author Information

Graphical Abstract

View original image Download original image
A new two-dimensional material in metallene family, PdMoSb trimetallene, is successfully produced and exhibits very high Pd utilization and superior performance toward electrocatalytic oxidation of alcohols.

Abstract

Metallenes are an emerging class of two-dimensional (2D) material with outstanding potential in electrocatalysis. Herein, we present a new PdMoSb trimetallene produced by a facile wet-chemistry procedure and tested for the alcohol oxidation reaction. PdMoSb shows an extremely high Pd utilization and superior performance toward ethanol, methanol, and glycerol electro-oxidation compared with PdMo and commercial Pd/C catalysts. Experimental results and density functional theory calculations reveal that the enhanced activity relies not only on the high surface area that characterizes the ultrathin 2D metallene structure, but also on the particular electronic configuration of Sb. Sb facilitates OH adsorption in the reactive-intermediate pathway and strongly enhances the CO tolerance in the poisoning-intermediate pathway for alcohol oxidation. The excellent alcohol oxidation performance of PdMoSb trimetallene demonstrates the high potential of multimetallenes in the field of electrocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2022_4873_MOESM1_ESM.pdf (3.4 MB)

References

[1]

Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237.

[2]

Song, Y. J.; Ji, K. Y.; Duan, H. H.; Shao, M. F. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050.

[3]

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 2020, 142, 13833–13838.

[4]

Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

[5]

Li, J.; Wang, C.; Shang, H. Y.; Wang, Y.; You, H. M.; Xu, H.; Du, Y. K. Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis. Chem. Eng. J. 2021, 424, 130319.

[6]

Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2022, 15, 18–37.

[7]

Li, M. X.; Cai, Y. D.; Zhang, J. J.; Sun, H. X.; Li, Z.; Liu, Y. J.; Zhang, X.; Dai, X. P.; Gao, F.; Song W. Y. Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation. Nano Res. 2022, 15, 3230–3238.

[8]

Zhang, Y.; Zhang, D.; Qin, Y. N.; Xiong, J.; Liu, J.; Yu, W. H.; Chen, X. L.; Li, S. P.; Lai, J. P.; Wang, L. Ultra-fast phosphating synthesis of metastable crystalline phase-controllable ultra-small MPx/CNT (M = Pd, Pt, Ru) for polyalcohol electrooxidation. J. Energy Chem. 2022, 72, 108–115.

[9]

Jiang, M. H.; Hu, Y.; Zhang, W. J.; Wang, L.; Yang, S. Y.; Liang, J. C.; Zhang, Z. W.; Zhang, X. L.; Jin, Z. Regulating the alloying degree and electronic structure of Pt-Au nanoparticles for high-efficiency direct C2+ alcohol fuel cells. Chem. Mater. 2021, 33, 3767–3778.

[10]

Chang, J. F.; Ko, T. J.; Je, M.; Chung, H. S.; Han, S. S.; Shawkat, M. S.; Wang, M. J.; Park, S. J.; Yu, S. M.; Bae, T. S. et al. Layer orientation-engineered two-dimensional platinum ditelluride for high-performance direct alcohol fuel cells. ACS Energy Lett. 2021, 6, 3481–3487.

[11]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[12]

Wang, Q. X.; Liu, J. F.; Zhang, W.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. Branch-regulated palladium-antimony nanoparticles boost ethanol electro-oxidation to acetate. Inorg. Chem. 2022, 61, 6337–6346.

[13]

Pan, Y.; Li, H. D.; Xiong, J.; Yu, Y. D.; Du, H. Y.; Li, S. X.; Wu, Z. C.; Li, S. P.; Lai, J. P.; Wang, L. Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C–C coupling. Appl. Catal. B 2022, 306, 121111.

[14]

Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

[15]

Liu, J. F.; Luo, Z. S.; Li, J. S.; Yu, X. T.; Llorca, J.; Nasiou, D.; Arbiol, J.; Meyns, M.; Cabot, A. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Appl. Catal. B 2019, 242, 258–266.

[16]

Yin, X.; Chen, Q. Y.; Tian, P.; Zhang, P.; Zhang, Z. Y.; Voyles, P. M.; Wang, X. D. Ionic layer epitaxy of nanometer-thick palladium nanosheets with enhanced electrocatalytic properties. Chem. Mater. 2018, 30, 3308–3314.

[17]

Maity, A.; Belgamwar, R.; Polshettiwar, V. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nat. Protocols 2019, 14, 2177–2204.

[18]

Lv, F.; Huang, B. L.; Feng, J. R.; Zhang, W. Y.; Wang, K.; Li, N.; Zhou, J. H.; Zhou, P.; Yang, W. X.; Du, Y. P. et al. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. Natl. Sci. Rev. 2021, 8, nwab019.

[19]

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.

[20]

Lv, H.; Wang, Y. R.; Xu, D. D.; Liu, B. Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation. Nano Res. 2021, 14, 3274–3281.

[21]

Zhao, Z. P.; Espinosa, M. M. F.; Zou, J. H.; Xue, W.; Duan, X. F.; Miao, J. W.; Huang, Y. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation. Nano Res. 2019, 12, 1467–1472.

[22]

Zhang, S. M.; Liu, K.; Liu, Z. J.; Liu, M. X.; Zhang, Z. X.; Qiao, Z.; Ming, L.; Gao, C. B. Highly strained Au-Ag-Pd alloy nanowires for boosted electrooxidation of biomass-derived alcohols. Nano Lett. 2021, 21, 1074–1082.

[23]

Fu, X. Y.; Wan, C. Z.; Huang, Y.; Duan, X. F. Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Adv. Funct. Mater. 2022, 32, 2106401.

[24]

Yu, X. T.; Luo, Z. S.; Zhang, T.; Tang, P. Y.; Li, J. S.; Wang, X.; Llorca, J.; Arbiol, J.; Liu, J. F.; Cabot, A. Stability of Pd3Pb nanocubes during electrocatalytic ethanol oxidation. Chem. Mater. 2020, 32, 2044–2052.

[25]

Zhou, M.; Liu, J. W.; Ling, C. Y.; Ge, Y. Y.; Chen, B.; Tan, C. L.; Fan, Z. X.; Huang, J. T.; Chen, J. Z.; Liu, Z. Q. et al. Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation. Adv. Mater. 2021, 34, 2106115.

[26]

Wang, Q. X.; Liu, J. F.; Li, T.; Zhang, T.; Arbiol, J.; Yan, S. X.; Wang, Y.; Li, H. M.; Cabot, A. Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production. Chem. Eng. J. 2022, 446, 136878.

[27]

Liang, Z. X.; Song, L.; Deng, S. Q.; Zhu, Y. M.; Stavitski, E.; Adzic, R. R.; Chen, J. Y.; Wang, J. X. Direct 12-electron oxidation of ethanol on a ternary Au(core)–PtIr(shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629–9636.

[28]

Huang, S. D.; Lu, S. L.; Gong, S.; Zhang, Q. J.; Duan, F.; Zhu, H.; Gu, H. W.; Dong, W. F.; Du, M. L. Sublayer stable Fe dopant in porous Pd metallene boosts oxygen reduction reaction. ACS Nano 2022, 16, 522–532.

[29]

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

[30]

Lai, J. P.; Lin, F.; Tang, Y. H.; Zhou, P.; Chao, Y. G.; Zhang, Y. L.; Guo, S. J. Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv. Energy Mater. 2019, 9, 1800684.

[31]

Yu, H. J.; Zhou, T. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12027–12031.

[32]

Liu, Y. D.; Dinh, K. N.; Dai, Z. F.; Yan, Q. Y. Metallenes: Recent advances and opportunities in energy storage and conversion applications. ACS Mater. Lett. 2020, 2, 1148–1172.

[33]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[34]

Wu, J. D.; Cui, X. Q.; Fan, J. C.; Zhao, J. X.; Zhang, Q. H.; Jia, G. R.; Wu, Q.; Zhang, D. T.; Hou, C. M.; Xu, S. et al. Stable bimetallene hydride boosts anodic CO tolerance of fuel cells. ACS Energy Lett. 2021, 6, 1912–1919.

[35]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[36]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[37]

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

[38]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[39]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[40]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[41]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[42]

Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

[43]
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification; Physical Electronics: Eden Prairie, 1992.
[44]

Wang, C. M.; Wu, Y. R.; Wang, X.; Zou, L. L.; Zou, Z. Q.; Yang, H. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation. Electrochim. Acta 2016, 220, 628–634.

[45]

Singh, R. N.; Anindita, A. S. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH. Int. J. Hyd. Energy 2009, 34, 2052–2057.

[46]

Qin, Y. N.; Huang, H.; Yu, W. H.; Zhang, H. N.; Li, Z. J.; Wang, Z. C.; Lai, J. P.; Wang, L.; Feng, S. H. Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction. Adv. Sci. 2022, 9, 2103722.

[47]

Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

[48]

Chen, L.; Lu, L. L.; Zhu, H. J.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

[49]

Yu, X. T.; Liu, J. F.; Li, J. S.; Luo, Z. S.; Zuo, Y.; Xing, C. C.; Llorca, J.; Nasiou, D.; Arbiol, J.; Pan, K. et al. Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation. Nano Energy 2020, 77, 105116.

[50]

Wu, Z. P.; Miao, B.; Hopkins, E.; Park, K.; Chen, Y. F.; Jiang, H. X.; Zhang, M. H.; Zhong, C. J.; Wang, L. C. Poisonous species in complete ethanol oxidation reaction on palladium catalysts. J. Phys. Chem. C 2019, 123, 20853–20868.

Nano Research
Pages 2041-2048
Cite this article:
Liu J, Wang Q, Li T, et al. PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst. Nano Research, 2023, 16(2): 2041-2048. https://doi.org/10.1007/s12274-022-4873-8
Topics:
Metrics & Citations  
Article History
Copyright
Return