The development of cost-effective and high-performance thermoelectric (TE) materials faces significant challenges, particularly in improving the properties of promising copper-based TE materials such as Cu3SbSe4, which are limited by their poor electrical conductivity. This study presents a detailed comparative analysis of three strategies to promote the electrical transport properties of Cu3SbSe4 through Sn doping: conventional Sn atomic doping, surface treatment with SnSe molecular complexes, and blending with SnSe nanocrystals to form nanocomposites, all followed by annealing and hot pressing under identical conditions. Our results reveal that a surface treatment using SnSe molecular complexes significantly enhances TE performance over atomic doping and nanocomposite formation, achieving a power factor of 1.1 mW·m−1·K−2 and a maximum dimensionless figure of merit zT value of 0.80 at 640 K, representing an excellent performance among Cu3SbSe4-based materials produced via solution-processing methods. This work highlights the effectiveness of surface engineering in optimizing the transport properties of nanostructured materials, demonstrating the versatility and cost-efficiency of solution-based technologies in the development of advanced nanostructured materials for application in the field of TE among others.
- Article type
- Year
- Co-author

The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy. Herein, we present a colloidal strategy to produce Ni-Fe bimetallic alloy nanoparticles (NPs) as efficient electrocatalysts for the electrooxidation of ethanol in alkaline media. Ni-Fe alloy NPs deliver a current density of 100 mA·cm−2 in a 1.0 M KOH solution containing 1.0 M ethanol merely at 1.5 V vs. reversible hydrogen electrode (RHE), well above the performance of other electrocatalysts in a similar system. Within continuous 10 h testing at this external potential, this electrode is able to produce an average of 0.49 mmol·cm−2·h−1 of acetate with an ethanol-to-acetate Faradaic efficiency of 80%. A series of spectroscopy techniques are used to probe the electrocatalytic process and analyze the electrolyte. Additionally, density functional theory (DFT) calculations demonstrate that the iron in the alloy NPs significantly enhances the electroconductivity and electron transfer, shifts the rate-limiting step, and lowers the energy barrier during the ethanol-to-acetate reaction pathway.
Metallenes are an emerging class of two-dimensional (2D) material with outstanding potential in electrocatalysis. Herein, we present a new PdMoSb trimetallene produced by a facile wet-chemistry procedure and tested for the alcohol oxidation reaction. PdMoSb shows an extremely high Pd utilization and superior performance toward ethanol, methanol, and glycerol electro-oxidation compared with PdMo and commercial Pd/C catalysts. Experimental results and density functional theory calculations reveal that the enhanced activity relies not only on the high surface area that characterizes the ultrathin 2D metallene structure, but also on the particular electronic configuration of Sb. Sb facilitates OH− adsorption in the reactive-intermediate pathway and strongly enhances the CO tolerance in the poisoning-intermediate pathway for alcohol oxidation. The excellent alcohol oxidation performance of PdMoSb trimetallene demonstrates the high potential of multimetallenes in the field of electrocatalysis.