AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Holey graphene oxide-templated construction of nano nickel-based metal–organic framework for highly efficient asymmetric supercapacitor

Hang Wang1( )Pengfei Zhao1Xingmao Zhang1Su Zhang1Xiaolong Lu1Zhipeng Qiu1Kang Ren1Zheng Xu1Ruxin Yao2Tong Wei1( )Zhuangjun Fan1 ( )
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

The designed nano structure of two-dimensional (2D) Ni(BDC) on holey graphene oxide enables rapid mass/charge transport and the obtained Ni(BDC)-HGO30 is favorable for asymmetric supercapacitor application.

Abstract

Metal–organic frameworks (MOFs) with redox-active metal sites and controllable crystalline structures make it possible to access the merits of highly-efficient electrode materials in electrochemical energy storage systems. However, most MOFs suffer from low capacitance and poor cycling stability that largely thwart their application. Herein, we present the holey graphene oxide (HGO) template strategy to prepare nano two-dimensional Ni(BDC) with HGO as both template and capping agent (denoted as Ni(BDC)-HGOx, x = 10, 20, 30, and 40 according to the added HGO amount). Structural analyses reveal that HGO can significantly inhibit the Ni(BDC) agglomeration, thus offering a high ion-accessible surface area. Ni(BDC)-HGO30 with well-exposed active sites exhibits a high capacitance of 1,115.6 F·g−1 at 1 A·g−1 in 6 M KOH aqueous, 1.8 times that of bulk Ni(BDC). An asymmetric supercapacitor with Ni(BDC)-HGO30 as a positive electrode and activated carbon as the opposing electrode delivers an energy density of 52.5 W·h·kg−1 and a power density up to 18.0 kW·kg−1, with 92.5% capacitance retention after 10,000 cycles. Galvanostatic intermittent titration technique and in situ electrochemical–Raman measurements were exploited to elucidate the electrochemical behavior of Ni(BDC)-HGO30. These results pave the way for the development of rationally tuned MOF materials for enhancing supercapacitor performances.

Electronic Supplementary Material

Download File(s)
12274_2022_4902_MOESM1_ESM.pdf (5.1 MB)

References

1

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

2

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

3

Freund, R.; Canossa, S.; Cohen, S. M.; Yan, W.; Deng, H. X.; Guillerm, V.; Eddaoudi, M.; Madden, D. G.; Fairen-Jimenez, D.; Lyu, H. et al. 25 years of reticular chemistry. Angew. Chem., Int. Ed. 2021, 60, 23946–23974.

4

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

5

Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30–36.

6

Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

7

Zhou, J. W.; Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 2017, 46, 6927–6945.

8

Kong, L. J.; Zhong, M.; Shuang, W.; Xu, Y. H.; Bu, X. H. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 2020, 49, 2378–2407.

9

Zheng, S. S.; Li, Q.; Xue, H. G.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 2020, 7, 305–314.

10

Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal–organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.

11

Yilmaz, G.; Peh, S. B.; Zhao, D.; Ho, G. W. Atomic- and molecular-level design of functional metal–organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv. Sci. 2019, 6, 1901129.

12

Zhao, Y. J.; Liu, J. Z.; Horn, M.; Motta, N.; Hu, M. J.; Li, Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci. China Mater. 2018, 61, 159–184.

13

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

14

Bai, Y.; Liu, C. L.; Chen, T. T.; Li, W. T.; Zheng, S. S.; Pi, Y. C.; Luo, Y. S.; Pang, H. MXene–copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322.

15

Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010.

16

Iqbal, R.; Sultan, M. Q.; Hussain, S.; Hamza, M.; Tariq, A.; Akbar, M. B.; Ma, Y. J.; Zhi, L. J. The different roles of cobalt and manganese in metal–organic frameworks for supercapacitors. Adv. Mater. Technol. 2021, 6, 2000941.

17

Deng, T.; Lu, Y.; Zhang, W.; Sui, M. L.; Shi, X. Y.; Wang, D.; Zheng, W. T. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 2018, 8, 1702294.

18

Ohata, T.; Nomoto, A.; Watanabe, T.; Hirosawa, I.; Makita, T.; Takeya, J.; Makiura, R. Uniaxially oriented electrically conductive metal–organic framework nanosheets assembled at air/liquid interfaces. ACS Appl. Mater. Interfaces 2021, 13, 54570–54578.

19

Sun, J.; Yu, X. B.; Zhao, S. H.; Chen, H. M.; Tao, K.; Han, L. Solvent-controlled morphology of amino-functionalized bimetal metal–organic frameworks for asymmetric supercapacitors. Inorg. Chem. 2020, 59, 11385–11395.

20

Tang, Q.; Ma, L.; Cao, F. F.; Gan, M. Y.; Yan, F. B. Different morphologies of Ni(OH)2 derived from a MOF template for high performance supercapacitors. J. Mater. Sci. :Mater. Electron. 2019, 30, 9114–9122.

21

Dong, R. H.; Han, P.; Arora, H.; Ballabio, M.; Karakus, M.; Zhang, Z.; Shekhar, C.; Adler, P.; St. Petkov, P.; Erbe, A. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 2018, 17, 1027–1032.

22

Nagaraju, G.; Sekhar, S. C.; Ramulu, B.; Hussain, S. K.; Narsimulu, D.; Yu, J. S. Ternary MOF-based redox active sites enabled 3D-on-2D nanoarchitectured battery-type electrodes for high-energy-density supercapatteries. Nano-Micro Lett. 2021, 13, 17.

23

Ran, F. T.; Xu, X. Q.; Pan, D.; Liu, Y. Y.; Bai, Y. P.; Shao, L. Ultrathin 2D metal–organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device. Nano-Micro Lett. 2020, 12, 46.

24

Wang, S. F.; Wang, J.; Zeng, M.; Yang, J. H.; Hu, N. T.; Su, Y. J.; Zhou, Z. H.; Pang, H.; Yang, Z. Synthesis of nickel-metal organic framework nanoplates with pyridine modulation and application to supercapacitors. J. Energy Stor. 2021, 38, 102528.

25

Xia, Z. Q.; Jia, X.; Ge, X.; Ren, C. T.; Yang, Q.; Hu, J.; Chen, Z.; Han, J.; Xie, G.; Chen, S. P. et al. Tailoring electronic structure and size of ultrastable metalated metal–organic frameworks with enhanced electroconductivity for high-performance supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 10228–10238.

26

Wu, H.; Zhang, W. L.; Kandambeth, S.; Shekhah, O.; Eddaoudi, M.; Alshareef, H. N. Conductive metal–organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. Adv. Energy Mater. 2019, 9, 1900482.

27

Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal–organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

28

Ye, C. J.; Qin, Q. Q.; Liu, J. Q.; Mao, W. P.; Yan, J.; Wang, Y.; Cui, J. W.; Zhang, Q.; Yang, L. P.; Wu, Y. C. Coordination derived stable Ni–Co MOFs for foldable all-solid-state supercapacitors with high specific energy. J. Mater. Chem. A 2019, 7, 4998–5008.

29

Chu, X. Y.; Meng, F. L.; Deng, T.; Lu, Y.; Bondarchuk, O.; Sui, M. L.; Feng, M.; Li, H. B.; Zhang, W. Mechanistic insight into bimetallic CoNi–MOF arrays with enhanced performance for supercapacitors. Nanoscale 2020, 12, 5669–5677.

30

Wang, M. C.; Shi, H. H.; Zhang, P. P.; Liao, Z. Q.; Wang, M.; Zhong, H. X.; Schwotzer, F.; Nia, A. S.; Zschech, E.; Zhou, S. Q. et al. Phthalocyanine-based 2D conjugated metal–organic framework nanosheets for high-performance micro-supercapacitors. Adv. Funct. Mater. 2020, 30, 2002664.

31

Zheng, T. X.; Kang, X. M.; Liu, Z. L. Effective enhancement of capacitive performance by the facile exfoliation of bulk metal–organic frameworks into 2D-functionalized nanosheets. Nanoscale 2021, 13, 13273–13284.

32

Liu, L.; Xu, Q.; Zhu, Q. L. Electrically conductive metal-organic frameworks for electrocatalytic applications. Adv. Energy Sustain. Res. 2021, 2, 2100100.

33

Hou, R. Z.; Miao, M.; Wang, Q. Y.; Yue, T.; Liu, H. F.; Park, H. S.; Qi, K.; Xia, B. Y. Integrated conductive hybrid architecture of metal–organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv. Energy Mater. 2020, 10, 1901892.

34

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

35

Li, S. H.; Chen, J. W.; Gong, X. F.; Wang, J. X.; Lee, P. S. Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Mater. 2018, 10, 406–416.

36

Kim, H. K.; Bak, S. M.; Lee, S. W.; Kim, M. S.; Park, B.; Lee, S. C.; Choi, Y. J.; Jun, S. C.; Han, J. T.; Nam, K. W. et al. Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy Environ. Sci. 2016, 9, 1270–1281.

37

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

38

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

39

Ngo, D. T.; Le, H. T. T.; Kim, C.; Lee, J. Y.; Fisher, J. G.; Kim, I. D.; Park, C. J. Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 2015, 8, 3577–3588.

40

Zhang, Y. F.; Su, Q.; Xu, W. J.; Cao, G. Z.; Wang, Y. P.; Pan, A. Q.; Liang, S. Q. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries. Adv. Sci. 2019, 6, 1900162.

41

Zhang, L. H.; Yue, J. M.; Wei, T.; Liu, Z.; Zhou, J. L.; Liu, C. Q.; Jiang, H.; Jiang, Z. M.; Fan, Z. J. Densely pillared holey-graphene block with high-level nitrogen doping enabling ultra-high volumetric capacity for lithium ion storage. Carbon 2019, 142, 327–336.

42

Liu, D. Q.; Li, Q. W.; Zhao, H. Z. Electrolyte-assisted hydrothermal synthesis of holey graphene films for all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 11471–11478.

43

Tao, Y.; Sui, Z. Y.; Han, B. H. Advanced porous graphene materials: From in-plane pore generation to energy storage applications. J. Mater. Chem. A 2020, 8, 6125–6143.

44

Chang, H. W.; Zhou, Y. N.; Zhang, S. Y.; Zheng, X. L.; Xu, Q. CO2-induced 2D Ni–BDC metal–organic frameworks with enhanced photocatalytic CO2 reduction activity. Adv. Mater. Interfaces 2021, 8, 2100205.

45

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal–organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

46

Zhao, Y. W.; Wang, J. E.; Pei, R. J. Micron-sized ultrathin metal–organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

47

Marshall, C. R.; Staudhammer, S. A.; Brozek, C. K. Size control over metal–organic framework porous nanocrystals. Chem. Sci. 2019, 10, 9396–9408.

48

Chen, Y. F.; Zhang, S. H.; Chen, F.; Cao, S. J.; Cai, Y.; Li, S. Q.; Ma, H. W.; Ma, X. J.; Li, P. F.; Huang, X. Q. et al. Defect engineering of highly stable lanthanide metal–organic frameworks by particle modulation for coating catalysis. J. Mater. Chem. A 2018, 6, 342–348.

49

Jiang, X. Y.; Deng, S. P.; Liu, J. J.; Qi, N.; Chen, Z. Q. Enhanced electrochemical performance of bimetallic doped Ni-based metal–organic frameworks by redox additives in an alkaline electrolyte. ACS Appl. Energy Mater. 2021, 4, 4610–4619.

50

Xiao, Y.; Wei, W.; Zhang, M. J.; Jiao, S.; Shi, Y. C.; Ding, S. J. Facile surface properties engineering of high-quality graphene: Toward advanced Ni–MOF heterostructures for high-performance supercapacitor electrode. ACS Appl. Energy Mater. 2019, 2, 2169–2177.

51

Li, G.; Cai, H. R.; Li, X. L.; Zhang, J.; Zhang, D. S.; Yang, Y. F.; Xiong, J. Construction of hierarchical NiCo2O4@Ni–MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 37675–37684.

52

Wang, G. S.; Yan, Z. X.; Wang, N. H.; Xiang, M.; Xu, Z. H. NiO/Ni metal–organic framework nanostructures for asymmetric supercapacitors. ACS Appl. Nano Mater. 2021, 4, 9034–9043.

53

Du, P. C.; Dong, Y. M.; Liu, C.; Wei, W. L.; Liu, D.; Liu, P. Fabrication of hierarchical porous nickel based metal–organic framework (Ni–MOF) constructed with nanosheets as novel pseudocapacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 2018, 518, 57–68.

54

Gao, S. W.; Sui, Y. W.; Wei, F. X.; Qi, J. Q.; Meng, Q. K.; Ren, Y. J.; He, Y. Z. Dandelion-like nickel/cobalt metal–organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 2018, 531, 83–90.

55

Wang, J.; Zhong, Q.; Zeng, Y. Q.; Cheng, D. Y.; Xiong, Y. H.; Bu, Y. F. Rational construction of triangle-like nickel–cobalt bimetallic metal–organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. J. Colloid Interface Sci. 2019, 555, 42–52.

56

Zhong, Y. X.; Cao, X. Y.; Liu, Y.; Cui, L.; Barrow, C.; Yang, W. R.; Liu, J. Q. Homogeneous nickel metal–organic framework microspheres on reduced graphene oxide as novel electrode material for supercapacitors with outstanding performance. J. Colloid Interface Sci. 2020, 561, 265–274.

57

Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.

58

Poudel, M. B.; Kim, H. J. Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO2 composite nanorods as cathode and Fe3O4/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor. J. Energy Chem. 2022, 64, 475–484.

59

Niu, H.; Yang, X.; Wang, Q.; Jing, X. Y.; Cheng, K.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances. J. Energy Chem. 2020, 46, 105–113.

60

Zhou, J. H.; Kang, Q.; Xu, S. C.; Li, X. G.; Liu, C.; Ni, L.; Chen, N. N.; Lu, C. L.; Wang, X. Z.; Peng, L. M. et al. Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Res. 2022, 15, 285–295.

61

Li, J. P.; Zhao, H. Y.; Wang, J. W.; Li, N.; Wu, M. M.; Zhang, Q.; Du, Y. P. Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy 2019, 62, 876–882.

62

Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal–organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.

63

Zhao, B.; Liu, J. W.; Xu, C. Y.; Feng, R. F.; Sui, P. F.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 2021, 31, 2008812.

64

Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

65

Li, Y.; Xu, Y. X.; Liu, Y.; Pang, H. Exposing {001} crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 2019, 15, 1902463.

66

Li, C. W.; Zhang, Q. C.; Li, T. T.; He, B.; Man, P.; Zhu, Z. Z.; Zhou, Z. Y.; Wei, L.; Zhang, K.; Hong, G. et al. Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. J. Mater. Chem. A 2020, 8, 3262–3269.

Nano Research
Pages 9047-9056
Cite this article:
Wang H, Zhao P, Zhang X, et al. Holey graphene oxide-templated construction of nano nickel-based metal–organic framework for highly efficient asymmetric supercapacitor. Nano Research, 2022, 15(10): 9047-9056. https://doi.org/10.1007/s12274-022-4902-5
Topics:

1562

Views

13

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 07 July 2022
Revised: 28 July 2022
Accepted: 14 August 2022
Published: 20 August 2022
© Tsinghua University Press 2022
Return