Large specific surface area (SSA) carbons have been demonstrated to be effective active materials and conductive substrates for energy storage devices, such as supercapacitors and batteries, due to their designable pore structures and buffering frameworks, as well as excellent electrical conductivity and chemical stability. Recently, tremendous efforts have been made in the design and preparation of large SSA carbons as electrode materials for energy storage devices, which can significantly enhance their capacitance, power and energy density, lifespan, and preeminent safety. In this review, recent advances in the development of large SSA carbons from structures and properties, porous carbon classifications, and preparation strategies to energy storage applications in supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and zinc-air batteries are discussed. Finally, current challenges, future research directions, and prospects in the development of large SSA carbons for energy storage applications are highlighted.
- Article type
- Year
- Co-author
Metal–organic frameworks (MOFs) with redox-active metal sites and controllable crystalline structures make it possible to access the merits of highly-efficient electrode materials in electrochemical energy storage systems. However, most MOFs suffer from low capacitance and poor cycling stability that largely thwart their application. Herein, we present the holey graphene oxide (HGO) template strategy to prepare nano two-dimensional Ni(BDC) with HGO as both template and capping agent (denoted as Ni(BDC)-HGOx, x = 10, 20, 30, and 40 according to the added HGO amount). Structural analyses reveal that HGO can significantly inhibit the Ni(BDC) agglomeration, thus offering a high ion-accessible surface area. Ni(BDC)-HGO30 with well-exposed active sites exhibits a high capacitance of 1,115.6 F·g−1 at 1 A·g−1 in 6 M KOH aqueous, 1.8 times that of bulk Ni(BDC). An asymmetric supercapacitor with Ni(BDC)-HGO30 as a positive electrode and activated carbon as the opposing electrode delivers an energy density of 52.5 W·h·kg−1 and a power density up to 18.0 kW·kg−1, with 92.5% capacitance retention after 10,000 cycles. Galvanostatic intermittent titration technique and in situ electrochemical–Raman measurements were exploited to elucidate the electrochemical behavior of Ni(BDC)-HGO30. These results pave the way for the development of rationally tuned MOF materials for enhancing supercapacitor performances.