AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ doping nickel single atoms in two-dimensional MXenes analogue support for room temperature NO2 sensing

Weiming Chen1,2,§Peipei Li1,2,§Jia Yu1,2Peixin Cui3Xiaohu Yu4( )Weiguo Song1,2( )Changyan Cao1,2( )
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China

§ Weiming Chen and Peipei Li contributed equally to this work.

Show Author Information

Graphical Abstract

Through a NiCl2 molten salt etching method, Ni single atoms could be in-situ doped in the lattice of MXenes analogue support, resulting in much larger charge transfer from Ni atoms to adjacent Ti atoms, and thus increasing the electronic density of these Ti atoms for NO2 sensing at room temperature.

Abstract

MXenes are promising supports for anchoring metal single atoms due to their versatile composition, well-defined nanostructures, and suitable conductivity. However, metal single atoms are usually coordinated with surface terminal groups (-O, -OH, -Cl, etc.) of MXenes via conventional wet-impregnation, resulting in limited electronic structure modification. Through a NiCl2 molten salt etching method, we observed that Ni single atoms could be in-situ doped in the lattice of MXenes analogue TiC0.5N0.5 support (denoted as Ni1/TiC0.5N0.5), resulting in much larger charge transfer from Ni atoms to adjacent Ti atoms, and thus increasing the electronic density of these Ti atoms. When used for NO2 sensing, Ni1/TiC0.5N0.5 exhibited excellent response sensitivity (ultra-low limit of detection ~ 10 ppb), selectivity, and good stability at room temperature. This study provides an effective strategy for producing MXenes analogue supported metal single atoms for potential application in gas sensing.

Electronic Supplementary Material

Download File(s)
12274_2022_4904_MOESM1_ESM.pdf (2.5 MB)

References

1

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

2

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

3

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

4

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

5

Yang, L.; Li, G. Q.; Ma, R. P.; Hou, S.; Chang, J. F.; Ruan, M. B.; Cai, W. B.; Jin, Z.; Xu, W. L.; Wang, G. L. et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 2021, 14, 2853–2860.

6

Liu, M.; Chen, Y. J.; Huang, X.; Dong, L. Z.; Lu, M.; Guo, C.; Yuan, D. Q.; Chen, Y. F.; Xu, G.; Li, S. L. et al. Porphyrin-based COF 2D materials: Variable modification of sensing performances by post-metallization. Angew. Chem., Int. Ed. 2022, 61, e202115308.

7

Xue, Z. G.; Yan, M. Y.; Yu, X.; Tong, Y. J.; Zhou, H.; Zhao, Y. F.; Wang, Z. Y.; Zhang, Y. S.; Xiong, C.; Yang, J. et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373.

8

Geng, X.; Li, S. W.; Mawella-Vithanage, L.; Ma, T.; Kilani, M.; Wang, B. W.; Ma, L.; Hewa-Rahinduwage, C. C.; Shafikova, A.; Nikolla, E. et al. Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 2021, 12, 4895.

9

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

10

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

11

Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

12

Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

13

Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, e2103148.

14

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

15

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

16

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

17

Liu, L. Y.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P. L.; Simon, P. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 2022, 16, 111–118.

18

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

19

Pang, S. Y.; Wong, Y. T.; Yuan, S. G.; Liu, Y.; Tsang, M. K.; Yang, Z. B.; Huang, H. T.; Wong, W. T.; Hao, J. H. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616.

20

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

21

Kuznetsov, D. A.; Chen, Z. X.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816.

22

Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

23

Nguyen, V. H.; Tabassian, R.; Oh, S.; Nam, S.; Mahato, M.; Thangasamy, P.; Rajabi-Abhari, A.; Hwang, W. J.; Taseer, A. K.; Oh, I. K. Stimuli-responsive MXene-based actuators. Adv. Funct. Mater. 2020, 30, 1909504.

24

Gu, H. F.; Li, X. Y.; Zhang, J. T.; Chen, W. X. Theoretical predictions, experimental modulation strategies, and applications of MXene-supported atomically dispersed metal sites. Small 2022, 18, e2105883.

25

Zhang, M. M.; Lai, C.; Li, B. S.; Liu, S. Y.; Huang, D. L.; Xu, F. H.; Liu, X. G.; Qin, L.; Fu, Y. K.; Li, L. et al. MXenes as superexcellent support for confining single atom: Properties, synthesis, and electrocatalytic applications. Small 2021, 17, e2007113.

26

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, e1903841.

27

Peng, W.; Luo, M.; Xu, X. D.; Jiang, K.; Peng, M.; Chen, D. C.; Chan, T. S.; Tan, Y. W. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 2020, 10, 2001364.

28

Kuznetsov, D. A.; Chen, Z. X.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single-atom-substituted Mo2CTx:Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.

29

Bao, H. H.; Qiu, Y.; Peng, X. Y.; Wang, J. A.; Mi, Y. Y.; Zhao, S. Z.; Liu, X. J.; Liu, Y. F.; Cao, R.; Zhuo, L. C. et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 2021, 12, 238.

30

Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom Zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

31

Bai, Y.; Liu, C. L.; Chen, T. T.; Li, W. T.; Zheng, S. S.; Pi, Y. C.; Luo, Y. S.; Pang, H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322.

32

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

33

Ma, G. L.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P. L.; Simon, P.; Lin, Z. F. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 2021, 12, 5085.

34

Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.

35

Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, e1902085.

36

Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477–1498.

37

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

38

Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

39

Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769.

40

Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, e1902709.

41

Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.

42

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

43

Longa, S. D.; Arcovito, A.; Girasole, M.; Hazemann, J. L.; Benfatto, M. Quantitative analysis of X-ray absorption near edge structure data by a full multiple scattering procedure: The Fe-CO geometry in photolyzed carbonmonoxy-myoglobin single crystal. Phys. Rev. Lett. 2001, 87, 155501.

44

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

45

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

46

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

47

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

48

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

49

Li, P. P.; Cao, C. Y.; Shen, Q. K.; Bai, B.; Jin, H. Q.; Yu, J.; Chen, W. M.; Song, W. G. Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sens. Actuators B Chem. 2021, 339, 129886.

50

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

51

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

52

Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592.

53

Li, P. P.; Jin, H. Q.; Yu, J.; Chen, W. M.; Zhao, R. Q.; Cao, C. Y.; Song, W. G. NO2 sensing with CdS nanowires at room temperature under green light illumination. Mater. Futures 2022, 1, 025303.

Nano Research
Pages 9544-9553
Cite this article:
Chen W, Li P, Yu J, et al. In-situ doping nickel single atoms in two-dimensional MXenes analogue support for room temperature NO2 sensing. Nano Research, 2022, 15(10): 9544-9553. https://doi.org/10.1007/s12274-022-4904-3
Topics:

851

Views

10

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 23 July 2022
Revised: 13 August 2022
Accepted: 13 August 2022
Published: 26 August 2022
© Tsinghua University Press 2022
Return