Graphical Abstract

MXenes are promising supports for anchoring metal single atoms due to their versatile composition, well-defined nanostructures, and suitable conductivity. However, metal single atoms are usually coordinated with surface terminal groups (-O, -OH, -Cl, etc.) of MXenes via conventional wet-impregnation, resulting in limited electronic structure modification. Through a NiCl2 molten salt etching method, we observed that Ni single atoms could be in-situ doped in the lattice of MXenes analogue TiC0.5N0.5 support (denoted as Ni1/TiC0.5N0.5), resulting in much larger charge transfer from Ni atoms to adjacent Ti atoms, and thus increasing the electronic density of these Ti atoms. When used for NO2 sensing, Ni1/TiC0.5N0.5 exhibited excellent response sensitivity (ultra-low limit of detection ~ 10 ppb), selectivity, and good stability at room temperature. This study provides an effective strategy for producing MXenes analogue supported metal single atoms for potential application in gas sensing.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Yang, L.; Li, G. Q.; Ma, R. P.; Hou, S.; Chang, J. F.; Ruan, M. B.; Cai, W. B.; Jin, Z.; Xu, W. L.; Wang, G. L. et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 2021, 14, 2853–2860.
Liu, M.; Chen, Y. J.; Huang, X.; Dong, L. Z.; Lu, M.; Guo, C.; Yuan, D. Q.; Chen, Y. F.; Xu, G.; Li, S. L. et al. Porphyrin-based COF 2D materials: Variable modification of sensing performances by post-metallization. Angew. Chem., Int. Ed. 2022, 61, e202115308.
Xue, Z. G.; Yan, M. Y.; Yu, X.; Tong, Y. J.; Zhou, H.; Zhao, Y. F.; Wang, Z. Y.; Zhang, Y. S.; Xiong, C.; Yang, J. et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373.
Geng, X.; Li, S. W.; Mawella-Vithanage, L.; Ma, T.; Kilani, M.; Wang, B. W.; Ma, L.; Hewa-Rahinduwage, C. C.; Shafikova, A.; Nikolla, E. et al. Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 2021, 12, 4895.
Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.
Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.
Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.
Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.
Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, e2103148.
Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.
Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.
Liu, L. Y.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P. L.; Simon, P. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 2022, 16, 111–118.
Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.
Pang, S. Y.; Wong, Y. T.; Yuan, S. G.; Liu, Y.; Tsang, M. K.; Yang, Z. B.; Huang, H. T.; Wong, W. T.; Hao, J. H. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616.
Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.
Kuznetsov, D. A.; Chen, Z. X.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816.
Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.
Nguyen, V. H.; Tabassian, R.; Oh, S.; Nam, S.; Mahato, M.; Thangasamy, P.; Rajabi-Abhari, A.; Hwang, W. J.; Taseer, A. K.; Oh, I. K. Stimuli-responsive MXene-based actuators. Adv. Funct. Mater. 2020, 30, 1909504.
Gu, H. F.; Li, X. Y.; Zhang, J. T.; Chen, W. X. Theoretical predictions, experimental modulation strategies, and applications of MXene-supported atomically dispersed metal sites. Small 2022, 18, e2105883.
Zhang, M. M.; Lai, C.; Li, B. S.; Liu, S. Y.; Huang, D. L.; Xu, F. H.; Liu, X. G.; Qin, L.; Fu, Y. K.; Li, L. et al. MXenes as superexcellent support for confining single atom: Properties, synthesis, and electrocatalytic applications. Small 2021, 17, e2007113.
Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, e1903841.
Peng, W.; Luo, M.; Xu, X. D.; Jiang, K.; Peng, M.; Chen, D. C.; Chan, T. S.; Tan, Y. W. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 2020, 10, 2001364.
Kuznetsov, D. A.; Chen, Z. X.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single-atom-substituted Mo2CTx:Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.
Bao, H. H.; Qiu, Y.; Peng, X. Y.; Wang, J. A.; Mi, Y. Y.; Zhao, S. Z.; Liu, X. J.; Liu, Y. F.; Cao, R.; Zhuo, L. C. et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 2021, 12, 238.
Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom Zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.
Bai, Y.; Liu, C. L.; Chen, T. T.; Li, W. T.; Zheng, S. S.; Pi, Y. C.; Luo, Y. S.; Pang, H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322.
Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.
Ma, G. L.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P. L.; Simon, P.; Lin, Z. F. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 2021, 12, 5085.
Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.
Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, e1902085.
Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477–1498.
Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.
Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.
Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769.
Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, e1902709.
Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.
Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.
Longa, S. D.; Arcovito, A.; Girasole, M.; Hazemann, J. L.; Benfatto, M. Quantitative analysis of X-ray absorption near edge structure data by a full multiple scattering procedure: The Fe-CO geometry in photolyzed carbonmonoxy-myoglobin single crystal. Phys. Rev. Lett. 2001, 87, 155501.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Li, P. P.; Cao, C. Y.; Shen, Q. K.; Bai, B.; Jin, H. Q.; Yu, J.; Chen, W. M.; Song, W. G. Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sens. Actuators B Chem. 2021, 339, 129886.
Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.
Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592.
Li, P. P.; Jin, H. Q.; Yu, J.; Chen, W. M.; Zhao, R. Q.; Cao, C. Y.; Song, W. G. NO2 sensing with CdS nanowires at room temperature under green light illumination. Mater. Futures 2022, 1, 025303.