AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

New materials and designs for 2D-based infrared photodetectors

Huitian Guo1Weihong Qi1,2( )
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
Show Author Information

Graphical Abstract

New two-dimensional (2D) materials beyond graphene and transition metal chalcogenides (TMDs), and rational structure designs are developed for 2D-based infrared photodetection enhancement.

Abstract

Infrared photodetectors have attracted much attention considering their wide civil and military applications. Two-dimensional (2D) materials offer new opportunities for the development of costless, high-level integration and high-performance infrared photodetectors. With the advent of a broad investigation of infrared photodetectors based on graphene and transition metal chalcogenides (TMDs) exhibiting unique properties in recent decades, research on the better performance of 2D-based infrared photodetectors has been extended to a larger scale, including explorations of new materials and artificial structure designs. In this review, after a brief background introduction, some major working mechanisms, including the photovoltaic effect, photoconductive effect, photogating effect, photothermoelectric effect and bolometric effect, are briefly offered. Then, the discussion mainly focuses on the recent progress of three categories of 2D materials beyond graphene and TMDs. Noble transition metal dichalcogenides, black phosphorus and arsenic black phosphorous and 2D ternary compounds are great examples of explorations of mid-wavelength or even long-wavelength 2D infrared photodetectors. Then, four types of rational structure designs, including type-II band alignments, photogating-enhanced designs, surface plasmon designs and ferroelectric-enhanced designs, are discussed to further enhance the performance via diverse mechanisms, which involve the narrower-bandgap-induced interlayer exciton transition, gate modulation by trapped carriers, surface plasmon polaritons and ferroelectric polarization in sequence. Furthermore, applications including imaging, flexible devices and on-chip integration for 2D-based infrared photodetectors are introduced. Finally, a summary of the state-of-the-art research status and personal discussion on the challenges are delivered.

References

[1]

Herschel, W. XIV. Experiments on the refrangibility of the invisible rays of the sun. Philos. Trans. 1800, 90, 284–292.

[2]

Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol. 2017, 2, 1700005.

[3]

Liu, J. K.; Xiao, L.; Liu, Y.; Cao, L. F.; Shen, Z. K. Development of long-wavelength infrared detector and its space-based application requirements. Chin. Phys. B 2019, 28, 028504.

[4]

Lawson, W. D.; Nielsen, S.; Putley, E. H.; Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids 1959, 9, 325–329.

[5]

Ye, Z. H.; Li, H. H.; Wang, J. D.; Chen, X.; Sun, C. H.; Liao, Q. J.; Huang, A. B.; Li, H.; Zhou, S. M.; Lin, J. M. et al. Recent hotspots and innovative trends of infrared photon detectors. J. Infrared Millim. Waves 2022, 41, 15–39.

[6]

Tan, B.; Cheng, S. F.; Liu, B.; Zhou, W. H.; Liu, Y. F.; Zhang, C. J.; Cao, S. S.; Ding, Y. Y.; Yang, Z. C.; Huang, L. Effective suppression of surface leakage currents in T2SL photodetectors with deep and vertical mesa sidewalls via TMA and H2 plasma combined pretreatment. Infrared Phys. Technol. 2021, 116, 103724.

[7]

Wang, J.; Chen, X. S.; Hu, W. D.; Wang, L.; Lu, W.; Xu, F. Q.; Zhao, J.; Shi, Y. L.; Ji, R. B. Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K. Appl. Phys. Lett. 2011, 99, 113508.

[8]

Tong, J. C.; Tobing, L. Y. M.; Luo, Y.; Zhang, D. W.; Zhang, D. H. Single plasmonic structure enhanced dual-band room temperature infrared photodetection. Sci. Rep. 2018, 8, 1548.

[9]

Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266.

[10]

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

[11]

Tan, C. L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197.

[12]

Izhnin, I. I.; Mynbaev, K. D.; Voitsekhovsky, A. V.; Korotaev, A. G.; Syvorotka, I. I.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Remesnik, V. G. et al. Arsenic-ion implantation-induced defects in HgCdTe films studied with Hall-effect measurements and mobility spectrum analysis. Infrared Phys. Technnol. 2019, 98, 230–235.

[13]

Rogalski, A.; Martyniuk, P.; Kopytko, M.; Madejczyk, P.; Krishna, S. InAsSb-based infrared photodetectors: Thirty years later on. Sensors 2020, 20, 7047.

[14]

Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W. D. Trends in performance limits of the HOT infrared photodetectors. Appl. Sci. 2021, 11, 501.

[15]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin. 2021, 37, 2108017.

[16]

Hu, X.; Wu, J. H.; Wu, M. Z.; Hu, J. Q. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res. 2022, 15, 805–817.

[17]

Xiong, Y. F.; Chen, J. H.; Lu, Y. Q.; Xu, F. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism. Adv. Electron. Mater. 2019, 5, 1800562.

[18]

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

[19]

Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

[20]

Yu, X. C.; Li, Y. Y.; Hu, X. N.; Zhang, D. L.; Tao, Y.; Liu, Z. X.; He, Y. M.; Haque, A.; Liu, Z.; Wu, T. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.

[21]

Rogalski, A.; Kopytko, M.; Martyniuk, P. Two-dimensional infrared and terahertz detectors: Outlook and status. Appl. Phys. Rev. 2019, 6, 021316.

[22]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[23]

Han, R. Y.; Feng, S.; Sun, D. M.; Cheng, H. M. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Sci. China Inf. Sci. 2021, 64, 140402.

[24]

Wang, Y. H.; Pang, J. B.; Cheng, Q. L.; Han, L.; Li, Y. F.; Meng, X.; Ibarlucea, B.; Zhao, H. B.; Yang, F.; Liu, H. Y. et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 2021, 13, 143.

[25]

Tamalampudi, S. R.; Dushaq, G.; Villegas, J. E.; Rajput, N. S.; Paredes, B.; Elamurugu, E.; Rasras, M. S. Short-wavelength infrared (SWIR) photodetector based on multi-layer 2D GaGeTe. Opt. Express 2021, 29, 39395–39405.

[26]

Wu, J. H.; Wei, M. L.; Mu, J. L.; Ma, H.; Zhong, C. Y.; Ye, Y. T.; Sun, C. L.; Tang, B.; Wang, L. C.; Li, J. Y. et al. High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits. ACS Nano 2021, 15, 15982–15991.

[27]

Wang, J.;Han, J.;Chen, X.; Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

[28]

Zhou, H. B.; Lai, H. J.; Sun, X.; Zhang, N.; Wang, Y. E.; Liu, P. Y.; Zhou, Y.; Xie, W. G. Van der Waals MoS2/two-dimensional perovskite heterostructure for sensitive and ultrafast sub-band-gap photodetection. ACS Appl. Mater. Interfaces 2022, 14, 3356–3362.

[29]

Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861–4867.

[30]

Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

[31]

Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156.

[32]

Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

[33]
Li, P.; Yuan, K.; Lin, D. Y.; Wang, T. T.; Du, W. Y.; Wei, Z. M.; Watanabe, K.; Taniguchi, T.; Ye, Y.; Dai, L. p-MoS2/n-InSe van der Waals heterojunctions and their applications in all-2D optoelectronic devices. RSC Adv. 2019, 9, 35039–35044.
[34]

Lin, P.; Yang, J. K. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. J. Alloys Compd. 2020, 842, 155890.

[35]

Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

[36]

Miao, J. S.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2021, 14, 1878–1888.

[37]

Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

[38]

Noumbé, U. N.; Gréboval, C.; Livache, C.; Chu, A.; Majjad, H.; López, L. E. P.; Mouafo, L. D. N.; Doudin, B.; Berciaud, S.; Chaste, J. et al. Reconfigurable 2D/0D p-n Graphene/HgTe nanocrystal heterostructure for infrared detection. ACS Nano 2020, 14, 4567–4576.

[39]

Zolotavin, P.; Evans, C.; Natelson, D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps. J. Phys. Chem. Lett. 2017, 8, 1739–1744.

[40]

Liu, H.; Liu, Y. J.; Dong, S. C.; Xu, H. Y.; Wu, Y. P.; Hao, L. Z.; Cao, B. L.; Li, M. J.; Wang, Z. G.; Han, Z. D. et al. Photothermoelectric SnTe photodetector with broad spectral response and high on/off ratio. ACS Appl. Mater. Interfaces 2020, 12, 49830–49839.

[41]

Guo, W. L.; Dong, Z.; Xu, Y. J.; Liu, C. L.; Wei, D. C.; Zhang, L. B.; Shi, X. Y.; Guo, C.; Xu, H.; Chen, G. et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. 2020, 7, 1902699.

[42]

Dai, M. J.; Wang, C. W.; Ye, M.; Zhu, S.; Han, S.; Sun, F. Y.; Chen, W. D.; Jin, Y. H.; Chua, Y.; Wang, Q. J. High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der waals contacts. ACS Nano 2022, 16, 295–305.

[43]

Xu, H. Y.; Hao, L. Z.; Liu, H.; Dong, S. C.; Wu, Y. P.; Liu, Y. J.; Cao, B. L.; Wang, Z. G.; Ling, C. C.; Li, S. X. et al. Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 2020, 12, 35250–35258.

[44]

Tong, L.; Peng, M.; Wu, P. S.; Huang, X. Y.; Li, Z.; Peng, Z. R.; Lin, R. F.; Sun, Q. D.; Shen, Y. X.; Zhu, X. F. et al. Hole-dominated Fowler-Nordheim tunneling in 2D heterojunctions for infrared imaging. Sci. Bull. 2021, 66, 139–146.

[45]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light:Sci. Appl. 2021, 10, 123.

[46]

Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.

[47]

Jiang, W.; Zheng, T.; Wu, B. M.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Zhang, X. Y.; Peng, M.; Wang, H. L.; Lin, T. et al. A versatile photodetector assisted by photovoltaic and bolometric effects. Light: Sci. Appl. 2020, 9, 160.

[48]

Pi, L. J.; Li, L.; Liu, K. L.; Zhang, Q. F.; Li, H. Q.; Zhai, T. Y. Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 2019, 29, 1904932.

[49]

Wang, Y. W.; Zhou, L.; Zhong, M. Z.; Liu, Y. P.; Xiao, S.; He, J. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res. 2022, 15, 3675–3694.

[50]

Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.

[51]

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

[52]

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

[53]

Zhang, G.; Amani, M.; Chaturvedi, A.; Tan, C. L.; Bullock, J.; Song, X. H.; Kim, H.; Lien, D. H.; Scott, M. C.; Zhang, H. et al. Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 2019, 114, 253102.

[54]

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

[55]

Sefidmooye Azar, N.; Bullock, J.; Shrestha, V. R.; Balendhran, S.; Yan, W.; Kim, H.; Javey, A.; Crozier, K. B. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates. ACS Nano 2021, 15, 6573–6581.

[56]

Prechtl, M.; Parhizkar, S.; Hartwig, O.; Lee, K.; Biba, J.; Stimpel-Lindner, T.; Gity, F.; Schels, A.; Bolten, J.; Suckow, S. et al. Hybrid devices by selective and conformal deposition of PtSe2 at low temperatures. Adv. Funct. Mater. 2021, 31, 2103936.

[57]

Dong, Z.; Yu, W. Z.; Zhang, L. B.; Mu, H. R.; Xie, L.; Li, J.; Zhang, Y.; Huang, L. Y.; He, X. Y.; Wang, L. et al. Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by mutiphysical mechanism. ACS Nano 2021, 15, 20403–20413.

[58]

Xu, W. T.; Jiang, J. Y.; Ma, H. F.; Zhang, Z. W.; Li, J.; Zhao, B.; Wu, R. X.; Yang, X. D.; Zhang, H. M.; Li, B. L. et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Res. 2020, 13, 2091–2097.

[59]

Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

[60]

Liang, F. X.; Zhao, X. Y.; Jiang, J. J.; Hu, J. G.; Xie, W. Q.; Lv, J.; Zhang, Z. X.; Wu, D.; Luo, L. B. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/pyramid Si heterojunction. Small 2019, 15, 1903831.

[61]

Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

[62]

Afzal, A. M.; Dastgeer, G.; Iqbal, M. Z.; Gautam, P.; Faisal, M. M. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 19625–19634.

[63]

Wu, D.; Mo, Z. H.; Han, Y. B.; Lin, P.; Shi, Z. F.; Chen, X.; Tian, Y. T.; Li, X. J.; Yuan, H. Y.; Tsang, Y. H. Fabrication of 2D PdSe2/3D CdTe mixed-dimensional van der Waals heterojunction for broadband infrared detection. ACS Appl. Mater. Interfaces 2021, 13, 41791–41801.

[64]

Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

[65]

Yuan, J.; Sun, T.; Hu, Z. X.; Yu, W. Z.; Ma, W. L.; Zhang, K.; Sun, B. Q.; Lau, S. P.; Bao, Q. L.; Lin, S. H. et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 2018, 10, 40614–40622.

[66]
Afzal, A. M.; Iqbal, M. Z.; Dastgeer, G.; ul. Ahmad, A.; Park, B. Highly sensitive, ultrafast, and broadband photo-detecting field-effect transistor with transition-metal dichalcogenide van der Waals heterostructures of MoTe2 and PdSe2. Adv. Sci. 2021, 8, 2003713.
[67]

Ahmad, W.; Liu, J. D.; Jiang, J. Z.; Hao, Q. Y.; Wu, D.; Ke, Y. X.; Gan, H. B.; Laxmi, V.; Ouyang, Z. B.; Ouyang, F. P. et al. Strong interlayer transition in few-layer InSe/PdSe2 van der Waals heterostructure for near-infrared photodetection. Adv. Funct. Mater. 2021, 31, 2104143.

[68]

Wu, D.; Jia, C.; Shi, F. H.; Zeng, L. H.; Lin, P.; Dong, L.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Jie, J. S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 2020, 8, 3632–3642.

[69]

Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

[70]

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

[71]

Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.

[72]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[73]

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

[74]

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

[75]

Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

[76]

Phaneuf-L’Heureux, A. L.; Favron, A.; Germain, J. F.; Lavoie, P.; Desjardins, P.; Leonelli, R.; Martel, R.; Francoeur, S. Polarization-resolved raman study of bulk-like and davydov-induced vibrational modes of exfoliated black phosphorus. Nano Lett. 2016, 16, 7761–7767.

[77]

Li, Y. Y.; Hu, Z. X.; Lin, S. H.; Lai, S. K.; Ji, W.; Lau, S. P. Giant anisotropic raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 2017, 27, 1600986.

[78]

Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

[79]

Liu, T. T.; Jiang, X. Y.; Zhou, C. B.; Xiao, S. Y. Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt. Express 2019, 27, 27618–27627.

[80]

Miao, J. S.; Song, B.; Xu, Z. H.; Cai, L.; Zhang, S. M.; Dong, L. X.; Wang, C. Single pixel black phosphorus photodetector for near-infrared imaging. Small 2018, 14, 1702082.

[81]

Ma, Y. M.; Dong, B. W.; Wei, J. X.; Chang, Y. H.; Huang, L.; Ang, K. W.; Lee, C. High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Adv. Opt. Mater. 2020, 8, 2000337.

[82]

Huang, L.; Dong, B.; Yu, Z. G.; Zhou, J.; Ma, Y.; Zhang, Y. W.; Lee, C.; Ang, K. W. Mid-infrared modulators integrating silicon and black phosphorus photonics. Mater. Today Adv. 2021, 12, 100170.

[83]

Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518.

[84]

Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34–41.

[85]

Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

[86]

Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60.

[87]

Zhang, X. M.; Yan, C. L.; Hu, X.; Dong, Q. S.; Liu, Z. Y.; Lv, W. M.; Zeng, C. H.; Su, R. G.; Wang, Y. Q.; Sun, T. Y. et al. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction. Mater. Res. Express 2021, 8, 035602.

[88]

Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

[89]

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

[90]

Liu, Y. J.; Wang, H. D.; Wang, S.; Wang, Y. J.; Wang, Y. Z.; Guo, Z. N.; Xiao, S. M.; Yao, Y.; Song, Q. H.; Zhang, H. et al. Highly efficient silicon photonic microheater based on black arsenic-phosphorus. Adv. Opt. Mater. 2020, 8, 1901526.

[91]

Yu, L.; Zhu, Z.; Gao, A. Y.; Wang, J. Z.; Miao, F.; Shi, Y.; Wang, X. M. Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology 2018, 29, 484001.

[92]

Zhong, M. Z.; Meng, H. T.; Ren, Z. H.; Huang, L.; Yang, J. H.; Li, B.; Xia, Q. L.; Wang, X. T.; Wei, Z. M.; He, J. Gate-controlled ambipolar transport in b-AsP crystals and their VIS-NIF photodetection. Nanoscale 2021, 13, 10579–10586.

[93]

Gong, F.; Wu, F.; Long, M. S.; Chen, F. S.; Su, M.; Yang, Z. Y.; Shi, J. Black phosphorus infrared photodetectors with fast response and high photoresponsivity. Phys. Status Solidi (RRL) - Rapid Res. Lett. 2018, 12, 1800310.

[94]

Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

[95]

Yuan, S. F.; Shen, C. F.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Ma, Y. Q.; Abbas, A.; Liu, B. L.; Haiges, R.; Ott, C. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179.

[96]

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

[97]

Wei, Q. L.; Li, R. P.; Lin, C. Q.; Han, A. L.; Nie, A. M.; Li, Y. R.; Li, L. J.; Cheng, Y. C.; Huang, W. Quasi-two-dimensional Se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 2019, 13, 13439–13444.

[98]

Sun, Y.; Zhang, J.; Ye, S.; Song, J.; Qu, J. L. Progress report on property, preparation, and application of Bi2O2Se. Adv. Funct. Mater. 2020, 30, 2004480.

[99]

Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

[100]

Li, J.; Wang, Z.; Wen, Y.; Chu, J.; Yin, L.; Cheng, R.; Lei, L.; He, P.; Jiang, C.; Feng, L.; He, J. High-Performance Near-Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets. Advanced Functional Materials 2018, 28.

[101]

Ma, X. Y.; Chang, D. H.; Zhao, C. X.; Li, R.; Huang, X. Y.; Zeng, Z. P.; Huang, X. W.; Jia, Y. Geometric structures and electronic properties of the Bi2X2Y (X, Y = O, S, Se, and Te) ternary compound family: A systematic DFT study. J. Mater. Chem. C 2018, 6, 13241–13249.

[102]

Chitara, B.; Limbu, T. B.; Orlando, J. D.; Tang, Y. G.; Yan, F. Ultrathin Bi2O2S nanosheet near-infrared photodetectors. Nanoscale 2020, 12, 16285–16291.

[103]

Yang, X. X.; Qu, L. H.; Gao, F.; Hu, Y. X.; Yu, H.; Wang, Y. X.; Cui, M. Q.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W. et al. High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 7175–7183.

[104]

Tian, P.; Wu, H. B.; Tang, L. B.; Xiang, J. Z.; Ji, R. B.; Lau, S. P.; Teng, K. S.; Guo, W.; Yao, Y. G.; Li, L. J. Ultrasensitive broadband photodetectors based on two-dimensional Bi2O2Te films. J. Mater. Chem. C 2021, 9, 13713–13721.

[105]

Wang, F. K.; Yang, S. J.; Wu, J.; Hu, X. Z.; Li, Y.; Li, H. Q.; Liu, X. T.; Luo, J. H.; Zhai, T. Y. Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 1251–1271.

[106]

Ulaganathan, R. K.; Sankar, R.; Lin, C. Y.; Murugesan, R. C.; Tang, K. C.; Chou, F. C. High-performance flexible broadband photodetectors based on 2D hafnium selenosulfide nanosheets. Adv. Electron. Mater. 2020, 6, 1900794.

[107]

Du, L. N.; Wang, C.; Fang, J. Z.; Wei, B.; Xiong, W. Q.; Wang, X. T.; Ma, L. J.; Wang, X. F.; Wei, Z. M.; Xia, C. X. et al. A ternary SnS1.26Se0. 76 alloy for flexible broadband photodetectors. RSC Adv. 2019, 9, 14352–14359.

[108]

Xu, T. F.; Luo, M.; Shen, N. M.; Yu, Y. Y.; Wang, Z.; Cui, Z. Z.; Qin, J. Y.; Liang, F.; Chen, Y. F.; Zhou, Y. et al. Ternary 2D layered material FePSe3 and near-infrared photodetector. Adv. Electron. Mater. 2021, 7, 2100207.

[109]

Kang, P. P.; Nan, H. Y.; Zhang, X. M.; Mo, H. X.; Ni, Z. H.; Gu, X. F.; Ostrikov, K.; Xiao, S. Q. Controllable synthesis of crystalline ReS2(1−x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv. Opt. Mater. 2020, 8, 1901415.

[110]

Luo, P.; Pei, K.; Wang, F. K.; Feng, X.; Li, H. Q.; Liu, X. T.; Luo, J. H.; Zhai, T. Y. Ultrathin 2D ternary Bi2Te2Se flakes for fast-response photodetectors with gate-tunable responsivity. Sci. China Mater. 2021, 64, 3017–3026.

[111]

Chen, J. W.; Li, L.; Gong, P. L.; Zhang, H. L.; Yin, S. Q.; Li, M.; Wu, L. F.; Gao, W. S.; Long, M. S.; Shan, L. et al. A submicrosecond-response ultraviolet-visible-near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3. ACS Nano 2022, 16, 7745–7754.

[112]

Qiao, J.; Feng, F.; Song, S.; Wang, T.; Shen, M. Y.; Zhang, G. P.; Yuan, X. C.; Somekh, M. G. Perovskite quantum dot-Ta2NiSe5 mixed-dimensional van der waals heterostructures for high-performance near-infrared photodetection. Adv. Funct. Mater. 2022, 32, 2110706.

[113]

Xu, G. L.; Liu, D. M.; Li, S. Y.; Wu, Y.; Zhang, Z. L.; Wang, S. B.; Huang, Z. K.; Zhang, Y. Z. Binary-ternary transition metal chalcogenides interlayer coupling in van der Waals type-II heterostructure for visible-infrared photodetector with efficient suppression dark currents. Nano Res. 2022, 15, 2689–2696.

[114]

Yang, T.; Li, X.; Wang, L. M.; Liu, Y. M.; Chen, K. J.; Yang, X.; Liao, L.; Dong, L.; Shan, C. X. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostructure. J. Mater. Sci. 2019, 54, 14742–14751.

[115]

Yang, S. J.; Luo, P.; Wang, F. K.; Liu, T.; Zhao, Y. H.; Ma, Y.; Li, H. Q.; Zhai, T. Y. Van der Waals epitaxy of Bi2Te2Se/Bi2O2Se vertical heterojunction for high performance photodetector. Small 2022, 18, 2105211.

[116]

Arora, H.; Dong, R. H.; Venanzi, T.; Zscharschuch, J.; Schneider, H.; Helm, M.; Feng, X. L.; Cánovas, E.; Erbe, A. Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 2020, 32, 1907063.

[117]

Chung, Y. K.; Lee, J.; Lee, W. G.; Sung, D.; Chae, S.; Oh, S.; Choi, K. H.; Kim, B. J.; Choi, J. Y.; Huh, J. Theoretical study of anisotropic carrier mobility for two-dimensional Nb2Se9 material. ACS Omega 2021, 6, 26782–26790.

[118]

Kecik, D.; Özçelik, V. O.; Durgun, E.; Ciraci, S. Structure dependent optoelectronic properties of monolayer antimonene, bismuthene and their binary compound. Phys. Chem. Chem. Phys. 2019, 21, 7907–7917.

[119]

Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

[120]

Wang, B.; Zhong, S. P.; Xu, P.; Zhang, H. Booming development and present advances of two dimensional MXenes for photodetectors. Chem. Eng. J. 2021, 403, 126336.

[121]

Hu, C. Q.; Li, L.; Shen, G. Z. Flexible transparent near-infrared photodetector based on 2D Ti3C2 MXene-Te van der Waals heterostructures. Chin. J. Chem. 2021, 39, 2141–2146.

[122]

Ren, A. B.; Zou, J. H.; Lai, H. G.; Huang, Y. X.; Yuan, L. M.; Xu, H.; Shen, K.; Wang, H.; Wei, S. Y.; Wang, Y. F. et al. Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 2020, 7, 1901–1911.

[123]

Yang, C. M.; Qin, S. Y.; Zuo, Y.; Shi, Y.; Bie, T.; Shao, M.; Yu, Y. Waveguide schottky photodetector with tunable barrier based on Ti3C2Tx/p-Si van der Waals heterojunction. Nanophotonics 2021, 10, 4133–4139.

[124]

Zhang, X. W.; Shao, J. H.; Yan, C. X.; Wang, X. M.; Wang, Y. F.; Lu, Z. H.; Qin, R. J.; Huang, X. W.; Tian, J. L.; Zeng, L. H. High performance broadband self-driven photodetector based on MXene (Ti3C2Tx)/GaAs Schottky junction. Mater. Des. 2021, 207, 109850.

[125]

Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

[126]

Gao, S. Y.; Sun, C. Q.; Zhang, X. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: A quantum transport and time-domain first principle study. Nanophotonics 2020, 9, 1931–1940.

[127]

Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

[128]

Peng, M.; Xie, R. Z.; Wang, Z.; Wang, P.; Wang, F.; Ge, H. N.; Wang, Y.; Zhong, F.; Wu, P. S.; Ye, J. F. et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 2021, 7, eabf7358.

[129]

Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976–14982.

[130]

Wang, X. T.; Zhong, F.; Kang, J.; Liu, C.; Lei, M.; Pan, L. F.; Wang, H. L.; Wang, F.; Zhou, Z. Q.; Cui, Y. et al. Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. Sci. China Mater. 2021, 64, 1230–1237.

[131]

Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 Van der Waals heterostructure. Small 2018, 14, 1703293.

[132]

Wu, H. L.; Kang, Z.; Zhang, Z. H.; Zhang, Z.; Si, H. N.; Liao, Q. L.; Zhang, S. C.; Wu, J.; Zhang, X. K.; Zhang, Y. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv. Funct. Mater. 2018, 28, 1802015.

[133]

Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. L.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

[134]

Du, Y. X.; Liu, H.; Hu, J. X.; Deng, L. E.; Bai, Y.; Bai, M. Y.; Xie, F. First-principles study of the electronic and optical properties of Bi2Se3/MoSe2 heterojunction. Phys. Status Solidi (B) 2021, 258, 2100403.

[135]

Yan, X.; Liu, C. S.; Li, C.; Bao, W. Z.; Ding, S. J.; Zhang, D. W.; Zhou, P. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 2017, 13, 1701478.

[136]

Wu, Z. T.; Zhu, N. C.; Jiang, J.; Zafar, A.; Hong, J. T.; Zhang, Y. Tuning interlayer coupling by laser irradiation and broadband photodetection in vertical MoTe2/WS2 vdW heterostructure. APL Mater. 2019, 7, 041108.

[137]

Mukherjee, S.; Jana, S.; Sinha, T. K.; Das, S.; Ray, S. K. Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS2 hybrids. Nanoscale Adv. 2019, 1, 3279–3287.

[138]

Kim, H. S.; Patel, M.; Kim, J.; Jeong, M. S. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices. ACS Appl. Mater. Interfaces 2018, 10, 3964–3974.

[139]

Zhang, Y. N.; Yun, J. N.; Zhang, S. Y.; Zeng, L. R.; Bi, Z. S.; Huang, N. N.; Kang, P.; Yan, J. F.; Zhao, W.; Zhang, Z. Y. et al. Self-powered near-infrared photodetector based on graphyne/hexagonal boron phosphide heterostructure with high responsivity and robustness: A theoretical study. Appl. Surf. Sci. 2021, 569, 151035.

[140]

Wang, Y. G.; Huang, X. W.; Wu, D.; Zhuo, R. R.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1,700 nm. J. Mater. Chem. C 2018, 6, 4861–4865.

[141]

Sun, Y.; Hu, R. X.; An, C. H.; Ma, X. L.; Zhang, J.; Liu, J. Visible to near-infrared photodetector based on SnSe2/WSe2 heterojunction with potential application in artificial visual neuron. Nanotechnology 2021, 32, 475206.

[142]

Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 2019, 13, 9028–9037.

[143]

Wang, Z. Y.; Zhang, X. W.; Wu, D.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Huang, X. W.; Li, X. J. Construction of mixed-dimensional WS2/Si heterojunctions for high-performance infrared photodetection and imaging applications. J. Mater. Chem. C 2020, 8, 6877–6882.

[144]

Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638–643.

[145]

Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

[146]

Qi, T. L.; Gong, Y. P.; Li, A. L.; Ma, X. M.; Wang, P. P.; Huang, R.; Liu, C.; Sakidja, R.; Wu, J. Z.; Chen, R. et al. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv. Funct. Mater. 2020, 30, 1905687.

[147]

Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

[148]

Inbaraj, C. R. P.; Mathew, R. J.; Ulaganathan, R. K.; Sankar, R.; Kataria, M.; Lin, H. Y.; Cheng, H. Y.; Lin, K. H.; Lin, H. I.; Liao, Y. M. et al. Modulating charge separation with hexagonal boron nitride mediation in vertical van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 26213–26221.

[149]

Shen, N. F.; Yang, X. D.; Wang, X. X.; Wang, G. H.; Wan, J. G. Two-dimensional van der Waals heterostructure of indium selenide/hexagonal boron nitride with strong interlayer coupling. Chem. Phys. Lett. 2020, 749, 137430.

[150]

Fang, H. H.; Wu, P. S.; Wang, P.; Zheng, Z.; Tang, Y. C.; Ho, J. C.; Chen, G.; Wang, Y. M.; Shan, C. X.; Cheng, X. B. et al. Global photocurrent generation in phototransistors based on single-walled carbon nanotubes toward highly sensitive infrared detection. Adv. Opt. Mater. 2019, 7, 1900597.

[151]
Ogawa, S.; Fukushima, S.; Okuda, S.; Shimatani, M. Graphene nanoribbon photogating for graphene-based infrared photodetectors. In Proceedings of SPIE 11741, Infrared Technology and Applications XLVII, 2021, pp 117411H.
[152]

Wen, H.; Xiong, L.; Tan, C. B.; Zhu, K. M.; Tang, Y.; Wang, J. B.; Zhong, X. L. Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector. Chin. Phys. B 2021, 30, 057803.

[153]

Wang, X. Z.; Pan, D.; Sun, M.; Lyu, F. J.; Zhao, J. H.; Chen, Q. High-performance room-temperature UV-IR photodetector based on the InAs nanosheet and its wavelength-and intensity-dependent negative photoconductivity. ACS Appl. Mater. Interfaces 2021, 13, 26187–26195.

[154]

Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201.

[155]

Hao, L. Z.; Du, Y. J.; Wang, Z. G.; Wu, Y. P.; Xu, H. Y.; Dong, S. C.; Liu, H.; Liu, Y. J.; Xue, Q. Z.; Han, Z. D. et al. Wafer-size growth of 2D layered SnSe films for UV-visible-NIR photodetector arrays with high responsitivity. Nanoscale 2020, 12, 7358–7365.

[156]

Shen, C. F.; Liu, Y. H.; Wu, J. B.; Xu, C.; Cui, D. Z.; Li, Z.; Liu, Q. Z.; Li, Y. R.; Wang, Y. X.; Cao, X. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303–310.

[157]

Wang, F. K.; Wu, J.; Zhang, Y.; Yang, S. J.; Zhang, N.; Li, H. Q.; Zhai, T. Y. High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci. China Mater. 2022, 65, 451–459.

[158]

Shen, T.; Li, F.; Zhang, Z. Y.; Xu, L.; Qi, J. J. High-performance broadband photodetector based on monolayer MoS2 hybridized with environment-friendly CuInSe2 quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 54927–54935.

[159]

Ilyas, N.; Li, D. Y.; Song, Y. H.; Zhong, H.; Jiang, Y. D.; Li, W. Low-dimensional materials and state-of-the-art architectures for infrared photodetection. Sensors 2018, 18, 4163.

[160]

Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J. et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 2022, 32, 2111970.

[161]

Liu, T. D.; Tong, L.; Huang, X. Y.; Ye, L. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B 2019, 28, 017302.

[162]

Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

[163]

Jeon, J.; Choi, H.; Choi, S.; Park, J. H.; Lee, B. H.; Hwang, E.; Lee, S. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 2019, 29, 1905384.

[164]

Dai, M. J.; Chen, H. Y.; Feng, R.; Feng, W.; Hu, Y. X.; Yang, H. H.; Liu, G. B.; Chen, X. S.; Zhang, J.; Xu, C. Y. et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric schottky junction. ACS Nano 2018, 12, 8739–8747.

[165]

Nakazawa, T.; Kim, D.; Kato, S.; Park, J.; Nam, J.; Kim, H. Photocurrent enhancement of PtSe2 photodetectors by using au nanorods. Photonics 2021, 8, 505.

[166]

Guo, J. X.; Li, S. D.; He, Z. B.; Li, Y. Y.; Lei, Z. C.; Liu, Y.; Huang, W.; Gong, T. X.; Ai, Q. Q.; Mao, L. N. et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Appl. Surf. Sci. 2019, 483, 1037–1043.

[167]

Zhang, D. H.; Zhou, J.; Liu, C. L.; Guo, S. K.; Deng, J. N.; Cai, Q. Y.; Li, Z. F.; Zhang, Y. F.; Zhang, W. Q.; Chen, X. S. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors. J. Appl. Phys. 2019, 126, 074301.

[168]

Yakimov, A. I.; Bloshkin, A. A.; Dvurechenskii, A. V. Plasmonic field enhancement by metallic subwave lattices on silicon in the near-infrared range. Jetp Letters 2019, 110, 411–416.

[169]

Yakimov, A. I.; Bloshkin, A. A.; Dvurechenskii, A. V. Tailoring the optical field enhancement in Si-based structures covered by nanohole arrays in gold films for near-infrared photodetection. Photon. Nanostruct. -Fundam. Appl. 2020, 40, 100790.

[170]

Azar, N. S.; Shrestha, V. R.; Crozier, K. B. Bull's eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors. Appl. Phys. Lett. 2019, 114, 091108.

[171]

Huang, Y.; Liu, Y.; Fang, C. Z.; Shao, Y.; Han, G. Q.; Zhang, J. C.; Hao, Y. Active tuning of the hybridization effects of mid-infrared surface plasmon resonance in a black phosphorus sheet array and a metal grating slit. Opt. Mater. Express 2020, 10, 14–28.

[172]

Lee, I. H.; Martin-Moreno, L.; Mohr, D. A.; Khaliji, K.; Low, T.; Oh, S. H. Anisotropic acoustic plasmons in black phosphorus. ACS Photonics 2018, 5, 2208–2216.

[173]

Huang, L.; Jia, Z. P.; Tang, B. Tunable anisotropic plasmon-induced transparency in black phosphorus-based metamaterials. J. Opt. 2022, 24, 014001.

[174]

Huang, Y.; Liu, X. Y.; Liu, Y.; Shao, Y.; Zhang, S. Q.; Fang, C. Z.; Han, G. Q.; Zhang, J. C.; Hao, Y. Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance. Opt. Mater. Express 2019, 9, 739–750.

[175]

Nguyen-Huu, N.; Pištora, J.; Cada, M.; Nguyen-Thoi, T.; Ma, Y. Q.; Yasumoto, K.; Rahman, B. M. A.; Wu, Q.; Ma, Y.; Ngo, Q. H. et al. Ultra-wide spectral bandwidth and enhanced absorption in a metallic compound grating covered by graphene monolayer. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 8500108.

[176]

Min, B. K.; Nguyen, V. T.; Kim, S. J.; Yi, Y.; Choi, C. G. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS2 with vertically aligned nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483.

[177]

Podder, S.; Pal, A. R. Hot carrier devices using visible and NIR responsive titanium nitride nanostructures with stoichiometry variation. Opt. Mater. 2019, 97, 109379.

[178]

Hassan, S.; Bera, S.; Gupta, D.; Ray, S. K.; Sapra, S. MoSe2-Cu2S vertical p-n nanoheterostructures for high-performance photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 4074–4083.

[179]

Sarkar, S. S.; Bera, S.; Hassan, S.; Sapra, S.; Khatri, R. K.; Ray, S. K. MoSe2-Cu2-xS/GaAs heterostructure-based self-biased two color-band photodetectors with high detectivity. J. Phys. Chem. C 2021, 125, 10768–10776.

[180]
Wu, J. Z. Exploration of uncooled quantum infrared detectors based on quantum dots/graphene heterostructures. In Proceedings of SPIE 11407, Infrared Technology and Applications XLVI, 2020, pp 1140706.
[181]

Xu, J.; Cheng, X. L.; Liu, T.; Yu, Y. Q.; Song, L. L.; You, Y.; Wang, T.; Zhang, J. J. Oxygen-incorporated and layer-by-layer stacked WS2 nanosheets for broadband, self-driven and fast-response photodetection. Nanoscale 2019, 11, 6810–6816.

[182]

Guo, J. X.; Liu, Y.; Lin, Y.; Tian, Y.; Zhang, J. X.; Gong, T. X.; Cheng, T. D.; Huang, W.; Zhang, X. S. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications. Nanoscale 2019, 11, 20868–20875.

[183]

Guo, Q. S.; Yu, R. W.; Li, C.; Yuan, S. F.; Deng, B. C.; de Abajo, F. J. G.; Xia, F. N. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 2018, 17, 986–992.

[184]

Sun, T.; Ma, W. L.; Liu, D. H.; Bao, X. Z.; Shabbir, B.; Yuan, J.; Li, S. J.; Wei, D. C.; Bai, Q. L. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection. J. Semicond. 2020, 41, 072907.

[185]

Sun, Y. X.; Niu, G.; Ren, W.; Meng, X. J.; Zhao, J. Y.; Luo, W. B.; Ye, Z. G.; Xie, Y. H. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano 2021, 15, 10982–11013.

[186]

Huang, H.; Wang, X. D.; Wang, P.; Wu, G. J.; Chen, Y.; Meng, C. M.; Liao, L.; Wang, J. L.; Hu, W. D.; Shen, H. et al. Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Adv. 2016, 6, 87416–87421.

[187]

Wu, G. J.; Wang, X. D.; Wang, P.; Huang, H.; Chen, Y.; Sun, S.; Shen, H.; Lin, T.; Wang, J. L.; Zhang, S. T. et al. Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology 2016, 27, 364002.

[188]

Zheng, D. Y.; Dong, X. Y.; Lu, J.; Niu, Y. R.; Wang, H. High-sensitivity infrared photoelectric detection based on WS2/Si structure tuned by ferroelectrics. Small 2022, 18, 2105188.

[189]

Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

[190]

Liu, L.; Wu, L. M.; Wang, A. W.; Liu, H. T.; Ma, R. S.; Wu, K.; Chen, J. C.; Zhou, Z.; Tian, Y.; Yang, H. T. et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity. Nano Lett. 2020, 20, 6666–6673.

[191]

Jin, H. J.; Park, C.; Lee, K. J.; Shin, G. H.; Choi, S. Y. Ultrasensitive WSe2/α-In2Se3 NIR photodetector based on ferroelectric gating effect. Adv. Mater. Technol. 2021, 6, 2100494.

[192]

Zhu, C. C.; Wang, Y. R.; Wang, F.; Yang, J.; Zhan, X. Y.; Fang, L.; Wang, Z. X.; He, J. Nonvolatile reconfigurable broadband photodiodes based on BP/α-In2Se3 ferroelectric p-n junctions. Appl. Phys. Lett. 2022, 120, 083101.

[193]

Guan, H. Y.; Hong, J. Y.; Wang, X. L.; Ming, J. Y.; Zhang, Z. L.; Liang, A. J.; Han, X. Y.; Dong, J. L.; Qiu, W. T.; Chen, Z. et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv. Opt. Mater. 2021, 9, 2100245.

[194]

Sun, Y. L.; Xie, D.; Zhang, X. W.; Xu, J. L.; Li, X. M.; Li, X.; Dai, R. X.; Li, X.; Li, P. L.; Gao, X. S. et al. Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS2 field-effect transistors with lead-zirconate-titanate ferroelectric gating. Nanotechnology 2017, 28, 045204.

[195]

Tai, X. C.; Chen, Y.; Wu, S. Q.; Jiao, H. X.; Cui, Z. Z.; Zhao, D. Y.; Huang, X. N.; Zhao, Q. R.; Wang, X. D.; Lin, T. et al. High-performance ReS2 photodetectors enhanced by a ferroelectric field and strain field. RSC Adv. 2022, 12, 4939–4945.

[196]

Baeumer, C.; Saldana-Greco, D.; Martirez, J. M. P.; Rappe, A. M.; Shim, M.; Martin, L. W. Ferroelectrically driven spatial carrier density modulation in graphene. Nat. Commun. 2015, 6, 6136.

[197]

Wu, G. J.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Jiang, Y. Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X. R. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.

[198]

Chen, Y.; Wang, X. D.; Huang, L.; Wang, X. T.; Jiang, W.; Wang, Z.; Wang, P.; Wu, B. M.; Lin, T.; Shen, H. et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat. Commun. 2021, 12, 4030.

[199]

Wang, X. D.; Shen, H.; Chen, Y.; Wu, G. J.; Wang, P.; Xia, H.; Lin, T.; Zhou, P.; Hu, W. D.; Meng, X. J. et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm. Adv. Sci. 2019, 6, 1901050.

[200]

Wang, P.; Wang, Y.; Ye, L.; Wu, M. Z.; Xie, R. Z.; Wang, X. D.; Chen, X. S.; Fan, Z. Y.; Wang, J. L.; Hu, W. D. Ferroelectric localized field-enhanced ZnO nanosheet ultraviolet photodetector with high sensitivity and low dark current. Small 2018, 14, 1800492.

[201]

Zhang, S. K.; Jiao, H. X.; Wang, X. D.; Chen, Y.; Wang, H. L.; Zhu, L. Q.; Jiang, W.; Liu, J. J.; Sun, L. X.; Lin, T. et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv. Funct. Mater. 2020, 30, 2006156.

[202]

Tao, L.; Chen, Z. F.; Li, Z. Y.; Wang, J. Q.; Xu, X.; Xu, J. B. Enhancing light–matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices. InfoMat 2021, 3, 36–60.

[203]

Zheng, Z. Q.; Chen, P. F.; Lu, J. T.; Yao, J. D.; Zhao, Y.; Zhang, M. L.; Hao, M. M.; Li, J. B. Self-assembly In2Se3/SnSe2 heterostructure array with suppressed dark current and enhanced photosensitivity for weak signal. Sci. China Mater. 2020, 63, 1560–1569.

[204]

Qiao, S.; Cong, R. D.; Liu, J. H.; Liang, B. L.; Fu, G. S.; Yu, W.; Ren, K. L.; Wang, S. F.; Pan, C. F. A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. J. Mater. Chem. C 2018, 6, 3233–3239.

[205]

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Ultrasensitive 2D/3D heterojunction multicolor photodetectors: A synergy of laterally and vertically aligned 2D layered materials. ACS Appl. Mater. Interfaces 2018, 10, 38166–38172.

[206]

Wu, P. S.; Ye, L.; Tong, L.; Wang, P.; Wang, Y.; Wang, H. L.; Ge, H. N.; Wang, Z.; Gu, Y.; Zhang, K. et al. Van der Waals two-color infrared photodetector. Light: Sci. Appl. 2022, 11, 6.

[207]

Lee, H. S.; Lim, J. Y.; Yu, S.; Jeong, Y.; Park, S.; Oh, K.; Hong, S.; Yang, S.; Lee, C. H.; Im, S. Seamless MoTe2 homojunction PIN diode toward 1, 300 nm short-wave infrared detection. Adv. Opt. Mater. 2019, 7, 1900768.

[208]

Jackson, E. M.; Nolde, J. A.; Kim, M.; Kim, C. S.; Cleveland, E. R.; Affouda, C. A.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.; Aifer, E. H. et al. Two-dimensional plasmonic grating for increased quantum efficiency in midwave infrared nBn detectors with thin absorbers. Opt. Express 2018, 26, 13850–13864.

[209]

Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

[210]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

[211]

Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

[212]

Ahn, J.; Ko, K.; Kyhm, J. H.; Ra, H. S.; Bae, H.; Hong, S.; Kim, D. Y.; Jang, J.; Kim, T. W.; Choi, S. et al. Near-infrared self-powered linearly polarized photodetection and digital incoherent holography using WSe2/ReSe2 van der Waals heterostructure. ACS Nano 2021, 15, 17917–17925.

[213]

Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.

[214]

Zhang, T.; Ling, C. C.; Wang, X. M.; Feng, B. X.; Cao, M.; Xue, X.; Xue, Q. Z.; Zhang, J. Q.; Zhu, L.; Wang, C. K. et al. Six-arm stellat dendritic-PbS flexible infrared photodetector for intelligent healthcare monitoring. Adv. Mater. Technol. 2022, 7, 2200250.

[215]

Fang, J. Z.; Zhou, Z. Q.; Xiao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G. Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291–317.

[216]

Yao, J. D.; Yang, G. W. Flexible and high-performance all-2D photodetector for wearable devices. Small 2018, 14, 1704524.

[217]

Li, J. Y.; Han, J. F.; Li, H. X.; Fan, X. Y.; Huang, K. Large-area, flexible broadband photodetector based on WS2 nanosheets films. Mater. Sci. Semicond. Proc. 2020, 107, 104804.

[218]

Choi, J. M.; Jang, H. Y.; Kim, A. R.; Kwon, J. D.; Cho, B.; Park, M. H.; Kim, Y. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680.

[219]

Thai, K. Y.; Park, I.; Kim, B. J.; Hoang, A. T.; Na, Y.; Park, C. U.; Chae, Y.; Ahn, J. H. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846.

[220]

Cordeiro, N. J. A.; Gaspar, C.; de Oliveira, M. J.; Nunes, D.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R.; Laureto, E.; Lourenço, S. A. Fast and low-cost synthesis of MoS2 nanostructures on paper substrates for near-infrared photodetectors. Appl. Sci. 2021, 11, 1234.

[221]

Mazaheri, A.; Lee, M.; van der Zant, H. S. J.; Frisenda, R.; Castellanos-Gomez, A. MoS2-on-paper optoelectronics: Drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale 2020, 12, 19068–19074.

[222]

Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129.

[223]

Liu, C. Y.; Guo, J. S.; Yu, L. W.; Xiang, Y. L.; Xiang, H. T.; Li, J.; Dai, D. X. High-speed and high-responsivity silicon/black-phosphorus hybrid plasmonic waveguide avalanche photodetector. ACS Photonics 2022, 9, 1764–1774.

[224]

Lin, H. T.; Song, Y.; Huang, Y. Z.; Kita, D.; Deckoff-Jones, S.; Wang, K. Q.; Li, L.; Li, J. Y.; Zheng, H. Y.; Luo, Z. Q. et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics 2017, 11, 798–805.

[225]

Yuan, S. F.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F. N. A wavelength-scale black phosphorus spectrometer. Nat. Photonics 2021, 15, 601–607.

[226]

Zhang, Z. H.; Yang, X. N.; Liu, K. H.; Wang, R. M. Epitaxy of 2D materials toward single crystals. Adv. Sci. 2022, 9, 2105201.

[227]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

[228]

Lei, Y.; Yang, X. Z.; Feng, W. L. Synthesis of vertically-aligned large-area MoS2 nanofilm and its application in MoS2/Si heterostructure photodetector. Nanotechnology 2022, 33, 105709.

[229]

Yang, H. W.; Xiao, Y. H.; Zhang, K. M.; Chen, Z. F.; Pan, J. T.; Zhuo, L. Q.; Zhong, Y. C.; Zheng, H. D.; Zhu, W. G.; Yu, J. H. et al. Self-powered and high-performance all-fiber integrated photodetector based on graphene/palladium diselenide heterostructures. Opt. Express 2021, 29, 15631–15640.

[230]

Guo, J. X.; Lin, L.; Li, S. D.; Chen, J. B.; Wang, S. C.; Wu, W. J.; Cai, J.; Zhou, T. C.; Liu, Y.; Huang, W. Ferroelectric superdomain controlled graphene plasmon for tunable mid-infrared photodetector with dual-band spectral selectivity. Carbon 2022, 189, 596–603.

[231]

Kim, Y. R.; Phan, T. L.; Cho, K. W.; Kang, W. T.; Kim, K.; Lee, Y. H.; Yu, W. J. Infrared proximity sensors based on photo-induced tunneling in van der Waals integration. Adv. Funct. Mater. 2021, 31, 2100966.

[232]

Rogalski, A.; Kopytko, M.; Martyniuk, P.; Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 2020, 28, 82–92.

[233]

You, C. Y.; Deng, W. J.; Liu, M.; Zhou, P.; An, B. X.; Wang, B.; Yu, S. L.; Zhang, Y. Z. Design and performance study of hybrid graphene/HgCdTe mid-infrared photodetector. IEEE Sens. J. 2021, 21, 26708–26715.

[234]

Hassan, A.; Guo, Y. G.; Wang, Q. Performance of the pentagonal PdSe2 sheet as a channel material in contact with metal surfaces and graphene. ACS Appl. Electron. Mater. 2020, 2, 2535–2542.

[235]

Cartamil-Bueno, S. J.; Cavalieri, M.; Wang, R. Z.; Houri, S.; Hofmann, S.; van der Zant, H. S. J. Mechanical characterization and cleaning of CVD single-layer h-BN resonators. npj 2D Mater. Appl. 2017, 1, 16.

Nano Research
Pages 3074-3103
Cite this article:
Guo H, Qi W. New materials and designs for 2D-based infrared photodetectors. Nano Research, 2023, 16(2): 3074-3103. https://doi.org/10.1007/s12274-022-4971-5
Topics:

5891

Views

23

Crossref

22

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 04 June 2022
Revised: 01 August 2022
Accepted: 26 August 2022
Published: 04 November 2022
© Tsinghua University Press 2022
Return