AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An intelligent MXene/MoS2 acoustic sensor with high accuracy for mechano-acoustic recognition

Jingwen Chen1,2,3Linlin Li2,3Wenhao Ran2,3Di Chen1( )Lili Wang2,3( )Guozhen Shen4( )
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

A machine learning-based voice recognition platform was established using the MXene/MoS2 flexible vibration sensor (FVS) with a high sensitivity for acoustic recognition. The performance of MXene/MoS2 FVS was systematically studied theoretically as well as experimentally. The MXene/MoS2 FVS showed high sensitivity (25.8 mV/dB) and a broadband response. Moreover, an artificial neural network (ANN)-based speaker recognition algorithm was adopted in voice data training.

Abstract

Auditory systems are the most efficient and direct strategy for communication between human beings and robots. In this domain, flexible acoustic sensors with magnetic, electric, mechanical, and optic foundations have attracted significant attention as key parts of future voice user interfaces (VUIs) for intuitive human–machine interaction. This study investigated a novel machine learning-based voice recognition platform using an MXene/MoS2 flexible vibration sensor (FVS) with high sensitivity for acoustic recognition. The performance of the MXene/MoS2 FVS was systematically investigated both theoretically and experimentally, and the MXene/MoS2 FVS exhibited high sensitivity (25.8 mV/dB). An MXene/MoS2 FVS with a broadband response of 40–3,000 Hz was developed by designing a periodically ordered architecture featuring systematic optimization. This study also investigated a machine learning-based speaker recognition process, for which a machine-learning-based artificial neural network was designed and trained. The developed neural network achieved high speaker recognition accuracy (99.1%).

Electronic Supplementary Material

Video
12274_2022_4973_MOESM1_ESM.mp4
12274_2022_4973_MOESM2_ESM.mp4
12274_2022_4973_MOESM3_ESM.mp4
Download File(s)
12274_2022_4973_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

[2]

Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

[3]

Blossey, R. Self-cleaning surfaces—Virtual realities. Nat. Mater. 2003, 2, 301–306.

[4]

Ward, D. J.; MacKay, D. J. C. Artificial intelligence: Fast hands-free writing by gaze direction. Nature 2002, 418, 838.

[5]

Li, Y. J.; Tang, J. S.; Gao, B.; Li, X. Y.; Xi, Y.; Zhang, W. R.; Qian, H.; Wu, H. Q. Oscillation neuron based on a low-variability threshold switching device for high-performance neuromorphic computing. J. Semicond. 2021, 42, 064101.

[6]

Hirtz, T.; Huurman S.; Tian, H.; Yang, Y.; Ren, T. L. Framework for TCAD augmented machine learning on multi- IV characteristics using convolutional neural network and multiprocessing. J. Semicond. 2021, 42, 124101.

[7]
In-situ/operando characterization techniques for organic semiconductors and devicesJ. Semicond.20224304110110.1088/1674-4926/43/4/041101

Jiang, S.; Dai, Q. Y.; Guo J. H.; Li, Y. In-situ/operando characterization techniques for organic semiconductors and devices. J. Semicond. 2022, 43, 041101.

[8]

Perrachione, T. K.; Del Tufo, S. N.; Gabrieli, J. D. E. Human voice recognition depends on language ability. Science 2011, 333, 595.

[9]

Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

[10]

Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

[11]

Mohamad, N.; Iovenitti, P.; Vinay, T. Modelling and optimisation of a spring-supported diaphragm capacitive MEMS microphone. Engineering 2010, 2, 762–770.

[12]
Weigold, J. W.; Brosnihan, T. J.; Bergeron, J.; Zhang, X. A MEMS condenser microphone for consumer applications. In 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 2006, pp 86–89.
[13]

Mamun, M. A. A.; Yuce, M. R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 2020, 30, 2005703.

[14]

Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.

[15]

Wang, L. L.; Chen, S.; Li, W.; Wang, K.; Lou, Z.; Shen, G. Z. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv. Mater. 2019, 31, 1804583.

[16]

Ma, X. H.; Jiang, Z. F.; Lin, Y. J. Flexible energy storage devices for wearable bioelectronics. J. Semicond. 2021, 42, 101602.

[17]

Tang, G. Q.; Yan, F. Flexible perovskite solar cells: Materials and devices. J. Semicond. 2021, 42, 101606.

[18]

Ma, Z.; Kong, D. S.; Pan, L. J.; Bao, Z. N. Skin-inspired electronics: Emerging semiconductor devices and systems. J. Semicond. 2020, 41, 041601.

[19]

Wang, D. Y.; Wang, L. L.; Shen, G. Z. Nanofiber/nanowires-based flexible and stretchable sensors. J. Semicond. 2020, 41, 041605.

[20]

Jin, X. J.; Li, L. L.; Zhao, S. F.; Li, X. H.; Jiang, K.; Wang, L. L.; Shen, G. Z. Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 2021, 15, 18385–18393.

[21]

Zhong, B. W.; Jiang, K.; Wang, L. L.; Shen, G. Z. Wearable sweat loss measuring devices: From the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 2022, 9, 2103257.

[22]

Wang, L. L.; Chai, R. Q.; Lou, Z.; Shen, G. Z. Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations. Nano Res. 2018, 11, 1029–1037.

[23]

Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

[24]

Han, J. H.; Kwak, J. H.; Joe, D. J.; Hong, S. K.; Wang, H. S.; Park, J. H.; Hur, S.; Lee, K. J. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 2018, 53, 198–205.

[25]

Lee, H. S.; Chung, J.; Hwang, G. T.; Jeong, C. K.; Jung, Y.; Kwak, J. H.; Kang, H. M.; Byun, M.; Kim, W. D.; Hur, S. et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 2014, 24, 6914–6921.

[26]

Lang, C. H.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.

[27]

Allen, J. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1977, 25, 235–238.

[28]

Chen, X. R.; Huang, X. W.; Jie, D.; Zheng, C. F.; Wang, X. L.; Zhang, B. W.; Shao, W. H.; Wang, G. L.; Zhang, W. D. Combining genetic risk score with artificial neural network to predict the efficacy of folic acid therapy to hyperhomocysteinemia. Sci. Rep. 2021, 11, 21430.

[29]

Pergialiotis, V.; Pouliakis, A.; Parthenis, C.; Damaskou, V.; Chrelias, C.; Papantoniou, N.; Panayiotides, I. The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women. Public Health 2018, 164, 1–6.

[30]

Pomeroy, B.; Grilc, M.; Likozar, B. Artificial neural networks for bio-based chemical production or biorefining: A review. Renew. Sustain. Energy Rev. 2022, 153, 111748.

[31]

Ran, W. H.; Ren, Z. H.; Wang, P.; Yan, Y. X.; Zhao, K.; Li, L. L.; Li, Z. X.; Wang, L. L.; Yang, J. H.; Wei, Z. M. et al. Integrated polarization-sensitive amplification system for digital information transmission. Nat. Commun. 2021, 12, 6476.

[32]

Li, B.; Lee, Y.; Yao, W.; Lu, Y.; Fan, X. J. Development and application of ANN model for property prediction of supercritical kerosene. Comput. Fluids 2020, 209, 104665.

[33]

Chen, J.; Li, J. C.; Li, Y.; Miao, X. S. Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond. 2021, 42, 013104.

[34]

Wei, S. J. Reconfigurable computing: A promising microchip architecture for artificial intelligence. J. Semicond. 2020, 41, 020301.

[35]

Song, J.; Wang, X. M.; Zhao, Z. P.; Li, W.; Zhi, T. A survey of neural network accelerator with software development environments. J. Semicond. 2020, 41, 021403.

[36]

Meng, J. L.; Wang, T. Y.; He, Z. Y.; Li, Q. X.; Zhu, H.; Ji L.; Chen, L.; Sun, Q. Q.; Zhang, D. W. A high-speed 2D optoelectronic in-memory computing device with 6-bit storage and pattern recognition capabilities. Nano Res. 2022, 15, 2472–2478.

[37]

Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.

Nano Research
Pages 3180-3187
Cite this article:
Chen J, Li L, Ran W, et al. An intelligent MXene/MoS2 acoustic sensor with high accuracy for mechano-acoustic recognition. Nano Research, 2023, 16(2): 3180-3187. https://doi.org/10.1007/s12274-022-4973-3
Topics:

1204

Views

13

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 13 April 2022
Revised: 27 August 2022
Accepted: 28 August 2022
Published: 17 September 2022
© Tsinghua University Press 2022
Return