Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Auditory systems are the most efficient and direct strategy for communication between human beings and robots. In this domain, flexible acoustic sensors with magnetic, electric, mechanical, and optic foundations have attracted significant attention as key parts of future voice user interfaces (VUIs) for intuitive human–machine interaction. This study investigated a novel machine learning-based voice recognition platform using an MXene/MoS2 flexible vibration sensor (FVS) with high sensitivity for acoustic recognition. The performance of the MXene/MoS2 FVS was systematically investigated both theoretically and experimentally, and the MXene/MoS2 FVS exhibited high sensitivity (25.8 mV/dB). An MXene/MoS2 FVS with a broadband response of 40–3,000 Hz was developed by designing a periodically ordered architecture featuring systematic optimization. This study also investigated a machine learning-based speaker recognition process, for which a machine-learning-based artificial neural network was designed and trained. The developed neural network achieved high speaker recognition accuracy (99.1%).
Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.
Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.
Blossey, R. Self-cleaning surfaces—Virtual realities. Nat. Mater. 2003, 2, 301–306.
Ward, D. J.; MacKay, D. J. C. Artificial intelligence: Fast hands-free writing by gaze direction. Nature 2002, 418, 838.
Li, Y. J.; Tang, J. S.; Gao, B.; Li, X. Y.; Xi, Y.; Zhang, W. R.; Qian, H.; Wu, H. Q. Oscillation neuron based on a low-variability threshold switching device for high-performance neuromorphic computing. J. Semicond. 2021, 42, 064101.
Hirtz, T.; Huurman S.; Tian, H.; Yang, Y.; Ren, T. L. Framework for TCAD augmented machine learning on multi- I–V characteristics using convolutional neural network and multiprocessing. J. Semicond. 2021, 42, 124101.
Jiang, S.; Dai, Q. Y.; Guo J. H.; Li, Y.
Perrachione, T. K.; Del Tufo, S. N.; Gabrieli, J. D. E. Human voice recognition depends on language ability. Science 2011, 333, 595.
Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.
Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.
Mohamad, N.; Iovenitti, P.; Vinay, T. Modelling and optimisation of a spring-supported diaphragm capacitive MEMS microphone. Engineering 2010, 2, 762–770.
Mamun, M. A. A.; Yuce, M. R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 2020, 30, 2005703.
Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.
Wang, L. L.; Chen, S.; Li, W.; Wang, K.; Lou, Z.; Shen, G. Z. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv. Mater. 2019, 31, 1804583.
Ma, X. H.; Jiang, Z. F.; Lin, Y. J. Flexible energy storage devices for wearable bioelectronics. J. Semicond. 2021, 42, 101602.
Tang, G. Q.; Yan, F. Flexible perovskite solar cells: Materials and devices. J. Semicond. 2021, 42, 101606.
Ma, Z.; Kong, D. S.; Pan, L. J.; Bao, Z. N. Skin-inspired electronics: Emerging semiconductor devices and systems. J. Semicond. 2020, 41, 041601.
Wang, D. Y.; Wang, L. L.; Shen, G. Z. Nanofiber/nanowires-based flexible and stretchable sensors. J. Semicond. 2020, 41, 041605.
Jin, X. J.; Li, L. L.; Zhao, S. F.; Li, X. H.; Jiang, K.; Wang, L. L.; Shen, G. Z. Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 2021, 15, 18385–18393.
Zhong, B. W.; Jiang, K.; Wang, L. L.; Shen, G. Z. Wearable sweat loss measuring devices: From the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 2022, 9, 2103257.
Wang, L. L.; Chai, R. Q.; Lou, Z.; Shen, G. Z. Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations. Nano Res. 2018, 11, 1029–1037.
Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.
Han, J. H.; Kwak, J. H.; Joe, D. J.; Hong, S. K.; Wang, H. S.; Park, J. H.; Hur, S.; Lee, K. J. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 2018, 53, 198–205.
Lee, H. S.; Chung, J.; Hwang, G. T.; Jeong, C. K.; Jung, Y.; Kwak, J. H.; Kang, H. M.; Byun, M.; Kim, W. D.; Hur, S. et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 2014, 24, 6914–6921.
Lang, C. H.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.
Allen, J. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1977, 25, 235–238.
Chen, X. R.; Huang, X. W.; Jie, D.; Zheng, C. F.; Wang, X. L.; Zhang, B. W.; Shao, W. H.; Wang, G. L.; Zhang, W. D. Combining genetic risk score with artificial neural network to predict the efficacy of folic acid therapy to hyperhomocysteinemia. Sci. Rep. 2021, 11, 21430.
Pergialiotis, V.; Pouliakis, A.; Parthenis, C.; Damaskou, V.; Chrelias, C.; Papantoniou, N.; Panayiotides, I. The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women. Public Health 2018, 164, 1–6.
Pomeroy, B.; Grilc, M.; Likozar, B. Artificial neural networks for bio-based chemical production or biorefining: A review. Renew. Sustain. Energy Rev. 2022, 153, 111748.
Ran, W. H.; Ren, Z. H.; Wang, P.; Yan, Y. X.; Zhao, K.; Li, L. L.; Li, Z. X.; Wang, L. L.; Yang, J. H.; Wei, Z. M. et al. Integrated polarization-sensitive amplification system for digital information transmission. Nat. Commun. 2021, 12, 6476.
Li, B.; Lee, Y.; Yao, W.; Lu, Y.; Fan, X. J. Development and application of ANN model for property prediction of supercritical kerosene. Comput. Fluids 2020, 209, 104665.
Chen, J.; Li, J. C.; Li, Y.; Miao, X. S. Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond. 2021, 42, 013104.
Wei, S. J. Reconfigurable computing: A promising microchip architecture for artificial intelligence. J. Semicond. 2020, 41, 020301.
Song, J.; Wang, X. M.; Zhao, Z. P.; Li, W.; Zhi, T. A survey of neural network accelerator with software development environments. J. Semicond. 2020, 41, 021403.
Meng, J. L.; Wang, T. Y.; He, Z. Y.; Li, Q. X.; Zhu, H.; Ji L.; Chen, L.; Sun, Q. Q.; Zhang, D. W. A high-speed 2D optoelectronic in-memory computing device with 6-bit storage and pattern recognition capabilities. Nano Res. 2022, 15, 2472–2478.
Ji, Z. H.; Zhang, L. L.; Tang, D. M.; Chen, C. M.; Nordling, T. E. M.; Zhang, Z. D.; Ren, C. L.; Da, B.; Li, X.; Guo, S. Y. et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021, 14, 4610–4615.