AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carrier-driven magnetic and topological phase transitions in two-dimensional III-V semiconductors

Yan Li1Xinru Ma1Hongwei Bao1Jian Zhou1,2( )Fei Ma1( )Jingbo Li3( )
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
Center for Alloy Innovation and Design, Xi’an Jiaotong University, Xi’an 710049, China
Institute of Semiconductors, South China Normal University, Guangzhou 510631, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Ferromagnetism and nontrivial topological bands have been observed in two-dimensional III-V semiconductors.

Abstract

III-V semiconductors such as GaAs are widely studied as promising candidates for high-speed integrated circuit. Despite these applications for conventional bulk structures, their fundamental physical properties in the nanoscale limit are still in scarcity, which is of great importance for the development of nanoelectronics. In this work, we demonstrate that the III-V semiconductor MX (M = Al, Ga, In; X = P, As, Sb) in its two-dimensional (2D) limit could exhibit double layer honeycomb (DLHC) configuration and distorted tetrahedral coordination, according to our first-principles calculations with HSE06 hybrid functional. It is found that surface reconstruction endows 2D III-V DLHCs with pronouncedly different electronic and magnetic properties from their bulk counterparts due to strong interlayer coupling. Mexican-hat-shape bands emerge at the top valence bands of pristine AlP, GaP, InP, AlAs, and InAs DLHCs, inducing the density of states showing a sharp van Hove singularity near the Fermi level. As a result, these DLHCs exhibit itinerant magnetism upon moderate hole doping, while the rest GaAs, AlSb, GaSb, and InSb DLHCs become magnetic under tensile strain with hole doping. With an exchange splitting of the localized pz states at the top valence bands, the hole-doped III-V DLHCs become half-metals with 100% spin-polarization. Remarkably, the InSb DLHC shows inverted band structure near the Fermi level, bringing about nontrivial topological band structures in stacked InSb DLHC due to the strong spin-orbital coupling. These III-V DLHCs expand the members of 2D material family and their exotic magnetic and topological properties may offer great potential for applications in the novel electronic and spintronic devices.

Electronic Supplementary Material

Download File(s)
12274_2022_5011_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Wei, S. H.; Zunger, A. Calculated natural band offsets of all II-VI and III-V semiconductors: Chemical trends and the role of cation d orbitals. Appl. Phys. Lett. 1998, 72, 2011–2013.

[2]

Chen, Y. X.; Liu, K. L.; Liu, J. X.; Lv, T. R.; Wei, B.; Zhang, T.; Zeng, M. Q.; Wang, Z. C.; Fu, L. Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 2018, 140, 16392–16395.

[3]

Del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479, 317–323.

[4]

Feng, Y. X.; Yang, X. L.; Zhang, Z. H.; Kang, D.; Zhang, J.; Liu, K. H.; Li, X. Z.; Shen, J. F.; Liu, F.; Wang, T. et al. Epitaxy of single-crystalline GaN film on CMOS-compatible Si (100) substrate buffered by graphene. Adv. Funct. Mater. 2019, 29, 1905056.

[5]

Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009.

[6]

Chen, J. W.; Wang, J. W.; Ji, K. Y.; Jiang, B.; Cui, X.; Sha, W.; Wang, B. J.; Dai, X. H.; Hua, Q. L.; Wan, L. Y. et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 2022, 15, 5492–5499.

[7]

Li, X. Q.; Chen, W. C.; Zhang, S. J.; Wu, Z. Q.; Wang, P.; Xu, Z. J.; Chen, H. S.; Yin, W. Y.; Zhong, H. K.; Lin, S. S. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy 2015, 16, 310–319.

[8]

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

[9]

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

[10]

Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X. Y.; Lin, Y. C.; DeSario, P. A.; Stone, G. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166–1171.

[11]

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

[12]

Zeng, P. Y.; Wang, W. H.; Jiang, J.; Liu, Z.; Han, D. S.; Hu, S. J.; He, J. Y.; Zheng, P.; Zheng, H.; Zheng, L. et al. Thickness-dependent enhanced optoelectronic performance of surface charge transfer-doped ReS2 photodetectors. Nano Res. 2022, 15, 3638–3646.

[13]

Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

[14]

Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Computational discovery of single-layer III-V materials. Phys. Rev. B 2013, 87, 165415.

[15]

Lucking, M. C.; Xie, W. Y.; Choe, D. H.; West, D.; Lu, T. M.; Zhang, S. B. Traditional semiconductors in the two-dimensional limit. Phys. Rev. Lett. 2018, 120, 086101.

[16]

Akiyama, T.; Kawamura, T.; Ito, T. Computational discovery of stable phases of graphene and h-BN van der Waals heterostructures composed of group III-V binary compounds. Appl. Phys. Lett. 2021, 118, 023101.

[17]

Jiang, Z. Y.; Li, Y. C.; Zhang, S. B.; Duan, W. H. Realizing an intrinsic excitonic insulator by decoupling exciton binding energy from the minimum band gap. Phys. Rev. B 2018, 98, 081408(R).

[18]

Dong, S.; Li, Y. C. Excitonic instability and electronic properties of AlSb in the two-dimensional limit. Phys. Rev. B 2021, 104, 085133.

[19]

Qin, L.; Zhang, Z. H.; Jiang, Z. Y.; Fan, K.; Zhang, W. H.; Tang, Q. Y.; Xia, H. N.; Meng, F. Q.; Zhang, Q. H.; Gu L. et al. Realization of AlSb in the double-layer honeycomb structure: A robust class of two-dimensional material. ACS Nano 2021, 15, 8184–8191.

[20]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[21]

Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter. 1994, 6, 8245–8257.

[22]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[23]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[24]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[25]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[26]

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

[27]

Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

[28]

Wang, X. J.; Yates, J. R.; Souza, I.; Vanderbilt, D. Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation. Phys. Rev. B 2006, 74, 195118.

[29]

Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865.

[30]

Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.

[31]

Tahini, H. A.; Chroneos, A.; Murphy, S. T.; Schwingenschlögl, U.; Grimes, R. W. Vacancies and defect levels in III-V semiconductors. J. Appl. Phys. 2013, 114, 063517.

[32]
Madelung, O. III-V compounds. In: Semiconductors: Data Handbook. Madelung, O., Ed.; Springer, Berlin, Heidelberg, 2004; pp 71–172.
[33]

Luo, N. N.; Duan, W. H.; Yakobson, B. I.; Zou, X. L. Excitons and electron-hole liquid state in 2D γ-phase group-IV monochalcogenides. Adv. Funct. Mater. 2020, 30, 2000533.

[34]

Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S. Structural and electronic properties of monolayer group III monochalcogenides. Phys. Rev. B 2017, 95, 115409.

[35]

Liao, H. J.; Xiao, Y.; Yang. Y. B.; Huang, L.; Dong, H. F.; Wu, F. G. Direct d –d hybridization mechanism for strong anisotropic carrier transport in layered Mo2SBr2. Phys. Rev. B 2022, 105, 195427.

[36]

Yao, Y. Y.; Zhan, X. Y.; Ding, C. Y.; Wang, F.; Wang, Y. R.; Yang, J.; Wang, Z. X.; He, J. One-step method to simultaneously synthesize separable Te and GeTe nanosheets. Nano Res. 2022, 15, 6736–6742.

[37]

Cao, T.; Li, Z. L.; Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 2015, 114, 236602.

[38]

Xu, H. W.; Zhou, J.; Wang, H.; Li, J. Giant photonic response of mexican-hat topological semiconductors for mid-infrared to terahertz applications. J. Phys. Chem. Lett. 2020, 11, 6119–6126.

[39]

Zhang, S. Q.; Zou, X. L. High electron mobility, controllable magnetism and anomalous light absorption in a monolayered tin mononitride semiconductor. J. Mater. Chem. C 2020, 8, 6396–6402.

[40]

Seixas, L.; Rodin, A. S.; Carvalho, A.; Castro Neto, A. H. Multiferroic two-dimensional materials. Phys. Rev. Lett. 2016, 116, 206803.

[41]

Sevinçli, H. Quartic dispersion, strong singularity, magnetic instability, and unique thermoelectric properties in two-dimensional hexagonal lattices of group-VA elements. Nano Lett. 2017, 17, 2589–2595.

[42]

Yuan, N. F. Q.; Isobe, H.; Fu, L. Magic of high-order van Hove singularity. Nat. Commun. 2019, 10, 5769.

[43]

Guerci, D.; Simon, P.; Mora, C. Higher-order Van Hove singularity in magic-angle twisted trilayer graphene. Phys. Rev. Res. 2022, 4, L012013.

[44]

Peng, H. W.; Xiang, H. J.; Wei, S. H.; Li, S. S.; Xia, J. B.; Li, J. B. Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. Phys. Rev. Lett. 2009, 102, 017201.

[45]

Si, C.; Duan, W. H.; Liu, Z.; Liu, F. Electronic strengthening of graphene by charge doping. Phys. Rev. Lett. 2012, 109, 226802.

[46]

Efetov, D. K.; Kim, P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 2010, 105, 256805.

[47]

Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lon. Ser. A 1938, 165, 372–414.

[48]

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter. 2002, 14, 2745–2779.

[49]

Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

[50]

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

[51]

Armiento, R.; Mattsson, A. E. Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B 2005, 72, 085108.

[52]

Mattsson, A. E.; Armiento, R. Implementing and testing the AM05 spin density functional. Phys. Rev. B 2009, 79, 155101.

[53]

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

[54]

Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

[55]

Zhang, S. Q.; Xu, R. Z.; Luo, N. N.; Zou, X. L. Two-dimensional magnetic materials: Structures, properties and external controls. Nanoscale 2021, 13, 1398–1424.

[56]

Zhang, F.; Yu, Y. L.; Mo, Z. X.; Huang, L.; Xia, Q. L.; Li, B.; Zhong, M. Z.; He, J. Alloying-engineered high-performance broadband polarized Bi1.3In0.7Se3 photodetector with ultrafast response. Nano Res. 2022, 15, 8451–8457.

[57]

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

[58]

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

[59]

Sung, S. H.; Schnitzer, N.; Brown, L.; Park, J.; Hovden, R. Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction. Phys. Rev. Mater. 2019, 3, 064003.

[60]

Zhang, Z. Y.; Ni, X. J.; Huang, H. Q.; Hu, L.; Liu, F. Valley splitting in the van der Waals heterostructure WSe2/CrI3: The role of atom superposition. Phys. Rev. B 2019, 99, 115441.

[61]

Sancho, M. P. L.; Sancho, J. M. L.; Rubio, J. Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100). J. Phys. F: Met. Phys. 1984, 14, 1205–1215.

Nano Research
Pages 3443-3450
Cite this article:
Li Y, Ma X, Bao H, et al. Carrier-driven magnetic and topological phase transitions in two-dimensional III-V semiconductors. Nano Research, 2023, 16(2): 3443-3450. https://doi.org/10.1007/s12274-022-5011-1
Topics:

1275

Views

7

Crossref

6

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 11 July 2022
Revised: 21 August 2022
Accepted: 03 September 2022
Published: 14 October 2022
© Tsinghua University Press 2022, corrected publication 2022
Return