AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Body-area sensor network featuring micropyramids for sports healthcare

Shenglong Wang1Weili Deng1( )Tao Yang1Guo Tian1Da Xiong1Xiao Xiao2Hongrui Zhang1Yue Sun1Yong Ao1Junfeng Huang1Jun Chen2( )Weiqing Yang1 ( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiao tong University, Chengdu 610031, China
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
Show Author Information

Graphical Abstract

A novel conductive elastomer featuring homogeneously micropyramid was fabricated as a piezoresistive sensor, which exhibited excellent comprehensive sensing performance. On this basis, a body-area sensor network was constructed for sports healthcare monitoring.

Abstract

Monitoring physiological signals of the human body can provide extremely important information for sports healthcare, preventing injuries and providing efficient guidance for individual sports. However, the signals related to human healthcare involve both subtle and vigorous signals, making it difficult for a sensor to satisfy the full-scale monitoring at the same time. Here, a novel conductive elastomer featuring homogeneously micropyramid-structured PDMS/CNT composite is used to fabricate high-performance piezoresistive sensors by a drop-casting method. Benefiting from the significant increase in the contact area of microstructure during deformation, the flexible sensor presents a broad detection range (up to 185.5 kPa), fast response/recovery time (44/13 ms), ultrahigh sensitivity (242.4 kPa–1) and excellent durability over 8,000 cycles. As a proof of concept, the as-fabricated pressure sensor can be used for body-area sports healthcare, and enable the detection of full-scale pressure distribution. Considering the fabulous sensing performance, the sensor may potentially become promising in personal sports healthcare and telemedicine monitoring.

Electronic Supplementary Material

Video
12274_2022_5014_MOESM2_ESM.mp4
12274_2022_5014_MOESM3_ESM.mp4
12274_2022_5014_MOESM4_ESM.mp4
12274_2022_5014_MOESM5_ESM.mp4
Download File(s)
12274_2022_5014_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Yu, Y.; Li, J. H.; Solomon, S. A.; Min, J. H.; Tu, J. B.; Guo, W.; Xu, C. H.; Song, Y.; Gao, W. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495.

[2]

Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

[3]

Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.

[4]

Yan, C.; Deng, W. L.; Jin, L.; Yang, T.; Wang, Z. X.; Chu, X.; Su, H.; Chen, J.; Yang, W. Q. Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring. ACS Appl. Mater. Interfaces 2018, 10, 41070–41075.

[5]

Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501.

[6]

Yu, X. G.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479.

[7]

Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

[8]

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

[9]

Niu, H. S.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y. K.; Yue, W. J.; Zhou, W. J.; Shen, G. Z. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622.

[10]

Shi, Z. Y.; Meng, L. X.; Shi, X. L.; Li, H. P.; Zhang, J. Z.; Sun, Q. Q.; Liu, X. Y.; Chen, J. Z.; Liu, S. R. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022, 14, 141.

[11]

Gou, G. Y.; Li, X. S.; Jian, J. M.; Tian, H.; Wu, F.; Ren, J.; Geng, X. S.; Xu, J. D.; Qiao, Y. C.; Yan, Z. Y. et al. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 2022, 8, eabn2156.

[12]

Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 2020, 30, 1909603.

[13]

Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

[14]

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

[15]

Tian, G.; Deng, W. L.; Xiong, D.; Yang, T.; Zhang, B. B.; Ren, X. R.; Lan, B. L.; Zhong, S.; Jin, L.; Zhang, H. R. et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814.

[16]

Lee, S.; Franklin, S.; Hassani, F. A.; Yokota, T.; Nayeem, O. G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D. W.; Someya, T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970.

[17]

Zhu, P.; Du, H. F.; Hou, X. Y.; Lu, P.; Wang, L.; Huang, J.; Bai, N. N.; Wu, Z. G.; Fang, N. X.; Guo, C. F. Skin-electrode iontronic interface for mechanosensing. Nat. Commun. 2021, 12, 4731.

[18]

Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F. J.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.

[19]

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

[20]

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

[21]

Chen, G. R.; Zhao, X.; Andalib, S.; Xu, J.; Zhou, Y. H.; Tat, T.; Lin, K.; Chen, J. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021, 4, 3725–3740.

[22]

Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

[23]

Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, G. R.; Fang, Y. S.; Tat, T.; Xiao, X.; Song, Y.; Li, S.; Chen, J. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755.

[24]

Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87.

[25]

Qi, K.; Zhou, Y. M.; Ou, K. K.; Dai, Y. L.; You, X. L.; Wang, H. B.; He, J. X.; Qin, X. H.; Wang, R. W. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 2020, 170, 464–476.

[26]

Clevenger, M.; Kim, H.; Song, H. W.; No, K.; Lee, S. Binder-free printed pedot wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958.

[27]

Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

[28]

Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

[29]

Jin, X. J.; Li, L. L.; Zhao, S. F.; Li, X. H.; Jiang, K.; Wang, L. L.; Shen, G. Z. Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 2021, 15, 18385–18393.

[30]

Lee, Y.; Park, J.; Cho, S.; Shin, Y. E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045–4054.

[31]

Yang, T.; Deng, W. L.; Chu, X.; Wang, X.; Hu, Y. T.; Fan, X.; Song, J.; Gao, Y. Y.; Zhang, B. B.; Tian, G. et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021, 15, 11555–11563.

[32]

Park, H.; Jeong, Y. R.; Yun, J.; Hong, S. Y.; Jin, S.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.

[33]

Sun, K.; Ko, H.; Park, H. H.; Seong, M.; Lee, S. H.; Yi, H.; Park, H. W.; Kim, T. I.; Pang, C.; Jeong, H. E. Hybrid architectures of heterogeneous carbon nanotube composite microstructures enable multiaxial strain perception with high sensitivity and ultrabroad sensing range. Small 2018, 14, 1803411.

[34]

Li, G.; Chen, D.; Li, C. L.; Liu, W. X.; Liu, H. Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range. Adv. Sci. 2020, 7, 2000154.

[35]

Ma, C.; Xu, D.; Wang, P. Q.; Lin, Z. Y.; Zhou, J. Y.; Jia, C. C.; Huang, J.; Li, S. T.; Huang, Y.; Duan, X. F. Two-dimensional van der waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 2021, 14, 3395–3401.

[36]

Ruth, S. R. A.; Beker, L.; Tran, H.; Feig, V. R.; Matsuhisa, N.; Bao, Z. N. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 2020, 30, 1903100.

[37]

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

[38]

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

[39]

Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 2017, 27, 1606066.

[40]

Zhong, M. J.; Zhang, L. J.; Liu, X.; Zhou, Y. N.; Zhang, M. Y.; Wang, Y. J.; Yang, L.; Wei, D. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 2021, 412, 128649.

[41]

Wang, H. M.; Li, S.; Wang, Y. L.; Wang, H. M.; Shen, X. Y.; Zhang, M. C.; Lu, H. J.; He, M. S.; Zhang, Y. Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 2020, 32, 1908214.

[42]

Wang, L.; Dou, W. K.; Chen, J.; Lu, K. C.; Zhang, F.; Abdulaziz, M.; Su, W. G.; Li, A. Q.; Xu, C. H.; Sun, Y. A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity. Mater. Sci. Eng. C 2020, 117, 111345.

[43]

Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

[44]

Huang, J. X.; Wang, H. G.; Li, Z. P.; Wu, X. Z.; Wang, J. Q.; Yang, S. R. Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 2019, 7, 7386–7394.

[45]

Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720.

[46]

Luo, N. Q.; Huang, Y.; Liu, J.; Chen, S. C.; Wong, C. P.; Zhao, N. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: Decoupled property tuning and bending reliability. Adv. Mater. 2017, 29, 1702675.

[47]

Fleming, S.; Thompson, M.; Stevens, R.; Heneghan, C.; Plüddemann, A.; Maconochie, I.; Tarassenko, L.; Mant, D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet 2011, 377, 1011–1018.

Nano Research
Pages 1330-1337
Cite this article:
Wang S, Deng W, Yang T, et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Research, 2023, 16(1): 1330-1337. https://doi.org/10.1007/s12274-022-5014-y
Topics:

6284

Views

33

Crossref

32

Web of Science

33

Scopus

1

CSCD

Altmetrics

Received: 29 July 2022
Revised: 03 September 2022
Accepted: 03 September 2022
Published: 05 November 2022
© Tsinghua University Press 2022
Return