Real-time monitoring of ball–shoe interactions can provide essential information for high-quality instruction in personalized soccer training, yet existing monitoring systems struggle to reflect specific forces, loci, and durations of action. Here, we design a self-powered piezoelectric sensor constructed by the gradient carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite to monitor the interactions between the ball and the shoe. Two-dimensional Raman mapping demonstrates the gradient structure of CNT/PVDF prepared by programmable electrospinning combined with a hot pressing. Benefitting from the synergistic effect of local polarization caused by the enrichment of CNT and the reduced diffusion of silver patterns in gradient structure, the as-prepared composite exhibits enhanced force-electric coupling with an excellent sensitivity of 80 mV/N and durability over 15,000 cycles. On this basis, we conformally attach a 3 × 3 sensor array to a soccer shoe, enabling real-time acquisition of kick position and contact force, which could provide quantitative assessment and personalize guidance for the training of soccer players. This self-powered piezoelectric sensor network system offers a promising paradigm for wearable monitoring under strong impact forces.
- Article type
- Year
- Co-author
Monitoring physiological signals of the human body can provide extremely important information for sports healthcare, preventing injuries and providing efficient guidance for individual sports. However, the signals related to human healthcare involve both subtle and vigorous signals, making it difficult for a sensor to satisfy the full-scale monitoring at the same time. Here, a novel conductive elastomer featuring homogeneously micropyramid-structured PDMS/CNT composite is used to fabricate high-performance piezoresistive sensors by a drop-casting method. Benefiting from the significant increase in the contact area of microstructure during deformation, the flexible sensor presents a broad detection range (up to 185.5 kPa), fast response/recovery time (44/13 ms), ultrahigh sensitivity (242.4 kPa–1) and excellent durability over 8,000 cycles. As a proof of concept, the as-fabricated pressure sensor can be used for body-area sports healthcare, and enable the detection of full-scale pressure distribution. Considering the fabulous sensing performance, the sensor may potentially become promising in personal sports healthcare and telemedicine monitoring.