AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-yield red phosphorus sponge mediated robust lithium-sulfur battery

Zheng LuoShusheng TaoYe TianHanyu TuLaiqiang XuWentao DengGuoqiang ZouHongshuai HouXiaobo Ji( )
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

A highly porous red phosphorus sponge with superior lithiophilicity and sulfiphilicity is efficiently synthesized as Li+ regulator and polysulfide adsorbent towards advanced Li-S batteries.

Abstract

Although lithium-sulfur (Li-S) batteries with high specific energy exhibit great potential for next-generation energy-storage systems, their practical applications are limited by the growth of Li dendrites and lithium polysulfides (LiPSs) shuttling. Herein, a highly porous red phosphorus sponge (HPPS) with well distributed pore structure was efficiently prepared via a facile and large-scale hydrothermal process for polysulfides adsorption and dendrite suppression. As experimental demonstrated, the porous red phosphorus modified separator with increased active site greatly promotes the chemisorption of LiPSs to efficiently immobilize the active sulfur within the cathode section, while Li metal anode activated by Li3P interlayer with abundant ionically conductive channels significantly eliminates the barrier for uniform Li+ permeation across the interlayer, contributing to the enhanced stability for both S cathode and Li anode. Mediated by the HPPS, long-term stability of 1,200 h with minor voltage hysteresis is achieved in symmetric cells with Li3P@Li electrode while Li-S half-cell based on HPPS modified separator delivers an outperformed reversibility of 783.0 mAh·g−1 after 300 cycles as well as high-rate performance of 694.5 mAh·g−1 at 3 C, which further boosts the HPPS tuned full cells in practical S loading (3 mg·cm−2) and thin Li3P@Li electrode (100 μm) with a capacity retention of 71.8% after 200 cycles at 0.5 C. This work provides a cost-effective and metal free mediator for simultaneously alleviating the fundamental issues of both S cathode and Li anode towards high energy density and long cycle life Li-S full batteries.

Electronic Supplementary Material

Download File(s)
5029_ESM.pdf (2.2 MB)

References

[1]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[2]

Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102.

[3]

Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

[4]

Li, Y. C.; Zhou, Z. F.; Li, Y.; Zhang, Z. H.; Guo, X. S.; Liu, J.; Mao, C. M.; Li, Z. J.; Li, G. C. Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries. Nano Res. 2022, 15, 7234–7246.

[5]

Li, C. C.; Zhang, X. S.; Zhu, Y. H.; Zhang, Y.; Xin, S.; Wan, L. J.; Guo, Y. G. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater. 2021, 1, 100017.

[6]

Castillo, J.; Qiao, L. X.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. M. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003.

[7]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[8]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[9]

Yang, X. F.; Li, X.; Adair, K.; Zhang, H. M.; Sun, X. L. Structural design of lithium-sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 2018, 1, 239–293.

[10]

Zhong, M. E.; Guan, J. D.; Feng, Q. J.; Wu, X. W.; Xiao, Z. B.; Zhang, W.; Tong, S.; Zhou, N.; Gong, D. X. Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 2018, 128, 86–96.

[11]

Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

[12]

Zhang, S. J.; Zhang, Y. S.; Shao, G. S.; Zhang, P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Res. 2021, 14, 3942–3951.

[13]

Liu, D. D.; Xiong, X. H.; Liang, Q. W.; Wu, X. W.; Fu, H. K. An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 2021, 57, 9232–9235.

[14]

Yan, Y.; Shu, C. Z.; Zheng, R. X.; Li, M. L.; Ran, Z. Q.; He, M.; Hu, A. J.; Zeng, T.; Xu, H. Y.; Zeng, Y. Modulating sand’s time by ion-transport-enhancement toward dendrite-free lithium metal anode. Nano Res. 2022, 15, 3150–3160.

[15]

Zhang, J. Y.; Xu, G. B.; Zhang, Q.; Li, X.; Yang, Y.; Yang, L. W.; Huang, J. Y.; Zhou, G. M. Mo-O-C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium-sulfur batteries. Adv. Sci. 2022, 9, 2201579.

[16]

Chang, H.; Wu, Y. R.; Han, X.; Yi, T. F. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater. 2021, 1, 100003.

[17]

Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

[18]

Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

[19]

Li, C.; Liu, R.; Xiao, Y.; Cao, F. F.; Zhang, H. Recent progress of separators in lithium-sulfur batteries. Energy Storage Mater. 2021, 40, 439–460.

[20]

Liu, S. J.; Liu, X. F.; Chen, M. F.; Wang, D.; Ge, X.; Zhang, W.; Wang, X. Y.; Wang, C. H.; Qin, T. T.; Qin, H. Z. et al. High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination. Nano Res. 2022, 15, 7199–7208.

[21]

Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

[22]

Huang, Y. Z.; Lin, L.; Zhang, C. K.; Liu, L.; Li, Y. K.; Qiao, Z. S.; Lin, J.; Wei, Q. L.; Wang, L. S.; Xie, Q. S. et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, 2106004.

[23]

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

[24]

Chung, S. H.; Manthiram, A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 2014, 5, 1978–1983.

[25]

Huang, S.; Huixiang, E.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Transition metal phosphides: New generation cathode host/separator modifier for Li-S batteries. J. Mater. Chem. A 2021, 9, 7458–7480.

[26]

Li, S.; Luo, Z.; Tu, H. Y.; Zhang, H.; Deng, W. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 2021, 42, 679–686.

[27]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[28]

Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2018, 2, 2681–2693.

[29]

Shen, J.; Xu, X.; Liu, J.; Wang, Z.; Zuo, S.; Liu, Z.; Zhang, D.; Liu, J.; Zhu, M. Unraveling the catalytic activity of Fe-based compounds toward Li2Sx in Li-S chemical system from d-p bands. Adv. Energy Mater. 2021, 11, 2100673.

[30]

Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. Q.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694–13701.

[31]

Shen, J. D.; Xu, X. J.; Liu, J.; Liu, Z. B.; Li, F. K.; Hu, R. Z.; Liu, J. W.; Hou, X. H.; Feng, Y. Z.; Yu, Y. et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 8986–8996.

[32]

Wang, Z. S.; Shen, J. D.; Liu, J.; Xu, X. J.; Liu, Z. B.; Hu, R. Z.; Yang, L. C.; Feng, Y. Z.; Liu, J.; Shi, Z. C. et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.

[33]

Kim, Y.; Noh, Y.; Bae, J.; Ahn, H.; Kim, M.; Kim, W. B. N-doped carbon-embedded TiN nanowires as a multifunctional separator for Li-S batteries with enhanced rate capability and cycle stability. J. Energy Chem. 2021, 57, 10–18.

[34]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[35]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[36]

Luo, Z.; Tao, S. C.; Tian, Y.; Xu, L. Q.; Wang, Y.; Cao, X. Y.; Wang, Y. P.; Deng, W. T.; Zou, G. Q.; Liu, H. et al. Robust artificial interlayer for columnar sodium metal anode. Nano Energy 2022, 97, 107203.

[37]

Lin, L. D.; Liang, F.; Zhang, K. Y.; Mao, H. Z.; Yang, J.; Qian, Y. T. Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. J. Mater. Chem. A 2018, 6, 15859–15867.

[38]

Ye, S. F.; Wang, L. F.; Liu, F. F.; Shi, P. C.; Wang, H. Y.; Wu, X. J.; Yu, Y. g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 2020, 10, 2002647.

[39]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[40]

Luo, Z.; Liu, C.; Tian, Y.; Zhang, Y.; Jiang, Y. L.; Hu, J. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater. 2020, 27, 124–132.

[41]

Luo, Z.; Li, S.; Yang, L.; Tian, Y.; Xu, L. Q.; Zou, G. Q.; Hou, H. S.; Wei, W. F.; Chen, L. B.; Ji, X. B. Interfacially redistributed charge for robust lithium metal anode. Nano Energy 2021, 87, 106212.

[42]

Kim, Y.; Koo, D.; Ha, S.; Jung, S. C.; Yim, T.; Kim, H.; Oh, S. K.; Kim, D. M.; Choi, A.; Kang, Y. K. et al. Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries. ACS Nano 2018, 12, 4419–4430.

[43]

Rojaee, R.; Cavallo, S.; Mogurampelly, S.; Wheatle, B. K.; Yurkiv, V.; Deivanayagam, R.; Foroozan, T.; Rasul, M. G.; Sharifi-Asl, S.; Phakatkar, A. H. et al. Highly-cyclable room-temperature phosphorene polymer electrolyte composites for Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910749.

[44]

Yu, W.; Yang, J. L.; Li, J.; Zhang, K.; Xu, H. M.; Zhou, X.; Chen, W.; Loh, K. P. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 2021, 33, 2102083.

[45]

Zhu, J. L.; Liu, Z. G.; Wang, W.; Yue, L. G.; Li, W. W.; Zhang, H. Y.; Zhao, L. G.; Zheng, H.; Wang, J. B.; Li, Y. Y. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano 2021, 15, 1880–1892.

[46]

Wang, Z.; Feng, M.; Sun, H.; Li, G. R.; Fu, Q.; Li, H. B.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M. et al. Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy 2019, 59, 390–398.

[47]

Zhang, X.; Xie, H.; Kim, C. S.; Zaghib, K.; Mauger, A.; Julien, C. M. Advances in lithium-sulfur batteries. Mater. Sci. Eng. R 2017, 121, 1–29.

[48]

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

[49]

Ni, X. Y.; Qian, T.; Liu, X. J.; Xu, N.; Liu, J.; Yan, C. L. High lithium ion conductivity LiF/GO solid electrolyte interphase inhibiting the shuttle of lithium polysulfides in long-life Li-S batteries. Adv. Funct. Mater. 2018, 28, 1706513.

[50]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 2020, 32, 2002168.

[51]

Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

Nano Research
Pages 8329-8337
Cite this article:
Luo Z, Tao S, Tian Y, et al. High-yield red phosphorus sponge mediated robust lithium-sulfur battery. Nano Research, 2023, 16(6): 8329-8337. https://doi.org/10.1007/s12274-022-5029-4
Topics:
Part of a topical collection:

5722

Views

4

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 June 2022
Revised: 05 September 2022
Accepted: 08 September 2022
Published: 03 November 2022
© Tsinghua University Press 2022
Return