AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

All-inorganic transparent Hf0.85Ce0.15O2 ferroelectric thin films with high flexibility and stability

Sheng-Tao Mo1,2,3,§Kai-Ming Feng1,2,3,§Jing-Lin Pang1,2,3Kuo Ouyang1,2,3Li-Mei Jiang1,2,3Qiong Yang1,2,3( )Biao Zhang1,2,3( )Jie Jiang1,2,3( )
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Xiangtan University, Xiangtan 411105, China
Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University, Xiangtan 411105, China

§ Sheng-Tao Mo and Kai-Ming Feng contributed equally to this work.

Show Author Information

Graphical Abstract

Transparent Ce-doped hafnium oxide ferroelectric thin films were manufactured by chemical solution deposition on mica substrates with indium tin oxide (ITO) thin films as the bottom electrodes, which present excellent ferroelectric performance even under bending states.

Abstract

Electronic devices that are transparent and flexible have a wide range of applications in the domains of vital sign parameter monitoring, health management, and so on. Ferroelectric memory is a revolutionary nonvolatile memory that is ideal for data storage and processing in transparent flexible electronic systems. In this study, Ce-doped hafnium oxide ferroelectric thin film is manufactured on mica substrate by the chemical solution deposition with transparent indium tin oxide (ITO) thin films as the bottom electrodes. The transmittance of mica/ITO/Hf0.85Ce0.15O2 thin film is over 80%. The 2Pr of the transparent flexible Hf0.85Ce0.15O2 ferroelectric thin film is increased by about 22.4% and the Ec is reduced by 26.7% compared with those of Hf0.85Ce0.15O2 ferroelectric thin film grown on p+-Si substrate. The transparent flexible Hf0.85Ce0.15O2 ferroelectric thin film can remain keeping good quality when being bent under ±2.5 mm bending radius. Additionally, degradation of polarization, retention, and endurance performance was not obvious even at a bending radius of 5.0 mm after 104 bending cycles. This research provides a new strategy and an important experimental basis for the development and implementation of transparent flexible ferroelectric memories.

Electronic Supplementary Material

Download File(s)
12274_2022_5074_MOESM1_ESM.pdf (1 MB)

References

[1]

Shafique, K.; Khawaja, B. A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 8, 23022–23040.

[2]

Kim, D. H.; Ghaffari, R.; Lu, N. S.; Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 2012, 14, 113–128.

[3]

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa. S.; Chen. K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

[4]

Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

[5]

Mikolajick, T.; Schroeder, U.; Slesazeck, S. The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 2020, 67, 1434–1443.

[6]

Ma, C. H.; Jiang, J.; Shao, P. W.; Peng, Q. X.; Huang, C. W.; Wu, P. C.; Lee, J. T.; Lai, Y. H.; Tsai, D. P.; Wu, J. M. et al. Transparent antiradiative ferroelectric heterostructure based on flexible oxide heteroepitaxy. ACS Appl. Mater. Interfaces 2018, 10, 30574–30580.

[7]

Ren, C. L.; Tan, C. B.; Gong, L. J.; Tang, M. K.; Liao, M.; Tang, Y.; Zhong, X. L.; Guo, H. X.; Wang, J. B. Highly transparent, all-oxide, heteroepitaxy ferroelectric thin film for flexible electronic devices. Appl. Surf. Sci. 2018, 458, 540–545.

[8]

Gao, H.; Yang, Y. X.; Wang, Y. J.; Chen, L.; Wang, J. L.; Yuan, G. L.; Liu, J. M. Transparent, flexible, fatigue-free, optical-read, and nonvolatile ferroelectric memories. ACS Appl. Mater. Interfaces 2019, 11, 35169–35176.

[9]

Jin, H. Z.; Zhu, J. Size effect and fatigue mechanism in ferroelectric thin films. J. Appl. Phys. 2002, 92, 4594–4598.

[10]

Ihlefeld, J. F.; Harris, D. T.; Keech, R.; Jones, J. L.; Maria, J. P.; Trolier-McKinstry, S. Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 2016, 99, 2537–2557.

[11]

Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Do Kim, K.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.

[12]

Khan, S. B.; Wu, H.; Ma, L. W.; Hou, M. J.; Zhang, Z. J. HfO2 nanorod array as high-performance and high-temperature antireflective coating. Adv. Mater. Interfaces 2017, 4, 1600892.

[13]

Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

[14]

Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, W.; Kim, H. K.; Hwang, C. S. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 2013, 102, 112914.

[15]

Zeng, B. J.; Xiao, W. W.; Liao, J. J.; Liu, H.; Liao, M.; Peng, Q. X.; Zheng, S. Z.; Zhou, Y. C. Compatibility of HfN metal gate electrodes with Hf0.5Zr0.5O2 ferroelectric thin films for ferroelectric field-effect transistors. IEEE Electron Device Lett. 2018, 39, 1508–1511.

[16]
Polakowski, P.; Riedel, S.; Weinreich, W.; Rudolf, M.; Sundqvist, J.; Seidel, K.; Muller, J. Ferroelectric deep trench capacitors based on Al: HfO2 for 3D nonvolatile memory applications. In 2014 IEEE 6th International Memory Workshop (IMW), Taipei, China, 2014, pp 1–4.
[17]
Florent, K.; Pesic, M.; Subirats, A.; Banerjee, K.; Lavizzari, S.; Arreghini, A.; Di Piazza, L.; Potoms, G.; Sebaai, F.; McMitchell, S. R. C. et al. Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: Towards dense low-power memory. In 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 2.5. 1–2.5. 4.
[18]

Cheema, S. S.; Kwon, D.; Shanker, N.; Dos Reis, R.; Hsu, S. L.; Xiao, J.; Zhang, H. G.; Wagner, R.; Datar, A.; McCarter, M. R. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478–482.

[19]

Tian, X.; Shibayama, S.; Nishimura, T.; Yajima, T.; Migita, S.; Toriumi, A. Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm. Appl. Phys. Lett. 2018, 112, 102902.

[20]

Gong, N. B.; Ma, T. P. Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron Device Letter. 2016, 37, 1123–1126.

[21]

Pan, X.; Ma, T. P. Retention mechanism study of the ferroelectric field effect transistor. Appl. Phys. Lett. 2011, 99, 013505.

[22]

Schroeder, U.; Park, M. H.; Mikolajick, T.; Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653–669.

[23]

Martin, D.; Müller, J.; Schenk, T.; Arruda, T. M.; Kumar, A.; Strelcov, E.; Yurchuk, E.; Müller, S.; Pohl, D.; Schröder, U. et al. Ferroelectricity in Si-doped HfO2 revealed: A binary lead-free ferroelectric. Adv. Mater. 2014, 26, 8198–8202.

[24]

Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 2012, 22, 2412–2417.

[25]

Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Hwang, C. S. Thin HfxZr1−xO2 films: A new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 2014, 4, 1400610.

[26]

Shiraishi, T.; Choi, S.; Kiguchi, T.; Konno, T. J. Structural evolution of epitaxial CeO2-HfO2 thin films using atomic-scale observation: Formation of ferroelectric phase and domain structure. Acta Mater. 2022, 235, 118091.

[27]

Kim, M. G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388.

[28]

Bitla, Y.; Chu, Y. H. van der Waals oxide heteroepitaxy for soft transparent electronics. Nanoscale 2020, 12, 18523–18544.

[29]

Estandía, S.; Dix, N.; Chisholm, M. F.; Fina, I.; Sánchez, F. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001). Cryst. Growth Des. 2020, 20, 3801–3806.

[30]

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

[31]

Tu, N. Y.; Jiang, J.; Chen, Q.; Liao, J. J.; Liu, W. Y.; Yang, Q.; Jiang, L. M.; Zhou, Y. C. Flexible ferroelectric capacitors based on Bi3.15Nd0.85Ti3O12/muscovite structure. Smart Mater. Struct. 2019, 28, 054002.

[32]

Guan, Z.; Li, Y. K.; Zhao, Y. F.; Peng, Y.; Han, G. Q.; Zhong, N.; Xiang, P. H.; Chu, J. H.; Duan, C. G. Mechanical polarization switching in Hf0.5Zr0.5O2 thin film. Nano Lett. 2022, 22, 4792–4799.

[33]

Xu, T.; Xiang, L. Y.; Xu, M. L.; Xie, W. F.; Wang, W. Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film. Sci. Rep. 2017, 7, 8890.

[34]

Xu, M. L.; Guo, S. X.; Xiang, L. Y.; Xu, T.; Xie, W. F.; Wang, W. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans. Electron Devices 2018, 65, 1113–1118.

[35]

Khan, M. A.; Bhansali, U. S.; Alshareef, H. N. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates. Org. Electron. 2011, 12, 2225–2229.

[36]

Kim, W. Y.; Lee, H. C. Stable ferroelectric poly(vinylidene fluoride-trifluoroethylene) film for flexible nonvolatile memory application. IEEE Electron Device Lett. 2012, 33, 260–262.

[37]

Jiang, J.; Bitla, Y.; Huang, C. W.; Do, T. H.; Liu, H. J.; Hsieh, Y. H.; Ma, C. H.; Jang, C. Y.; Lai, Y. H.; Chiu, P. W. et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121.

[38]

Tsai, M. F.; Jiang, J.; Shao, P. W.; Lai, Y. H.; Chen, J. W.; Ho, S. Z.; Chen, Y. C.; Tsai, D. P.; Chu, Y. H. Oxide heteroepitaxy-based flexible ferroelectric transistor. ACS Appl. Mater. Interfaces 2019, 11, 25882–25890.

[39]

Yu, H.; Chung, C. C.; Shewmon, N.; Ho, S.; Carpenter, J. H.; Larrabee, R.; Sun, T. L.; Jones, J. L.; Ade, H.; O’Connor, B. T. et al. Flexible inorganic ferroelectric thin films for nonvolatile memory devices. Adv. Funct. Mater. 2017, 27, 1700461.

[40]

Liu, H. F.; Lu, T. Q.; Li, Y. X.; Ju, Z. Y.; Zhao, R. T.; Li, J. Z.; Shao, M. H.; Zhang, H. N.; Liang, R. R.; Wang, X. R. et al. Flexible quasi-van der Waals ferroelectric hafnium-based oxide for integrated high-performance nonvolatile memory. Adv. Sci. 2020, 7, 2001266.

[41]

Liu, W. Y.; Liao, J. J.; Jiang, J.; Zhou, Y. C.; Chen, Q.; Mo, S. T.; Yang, Q.; Peng, Q. X.; Jiang, L. M. Highly stable performance of flexible Hf0.6Zr0.4O2 ferroelectric thin films under multi-service conditions. J. Mater. Chem. C 2020, 8, 3878–3886.

[42]

Chen, Y. T.; Yang, Y.; Yuan, P.; Jiang, P. F.; Wang, Y.; Xu, Y. N.; Lv, S. X.; Ding, Y. X.; Dang, Z. W.; Gao, Z. M. et al. Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility. Nano Res. 2022, 15, 2913–2918.

[43]

Joh, H.; Jung, M.; Hwang, J.; Goh, Y.; Jung, T.; Jeon, S. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Appl. Mater. Interfaces. 2022, 14, 1326–1333.

[44]

Zhong, H.; Li, M. Q.; Zhang, Q. H.; Yang, L. H.; He, R.; Liu, F.; Liu, Z. H.; Li, G.; Sun, Q. C.; Xie, D. G. et al. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity. Adv. Mater. 2022, 34, 2109889.

[45]

Yang, B. B.; Li, C. H.; Liu, M.; Wei, R. H.; Tang, X. W.; Hu, L.; Song, W. H.; Zhu, X. B.; Sun, Y. P. Design of flexible inorganic BiFe0.93Mn0.07O3 ferroelectric thin films for nonvolatile memory. J. Materiomics. 2020, 6, 600–606.

[46]

Sun, H. Y.; Luo, Z.; Zhao, L. T.; Liu, C. C.; Ma, C.; Lin, Y.; Gao, G. Y.; Chen, Z. W.; Bao, Z. W.; Jin, X. et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. ACS Appl. Electron. Mater. 2020, 2, 1081–1089.

[47]

Pesquera, D.; Parsonnet, E.; Qualls, A.; Xu, R. J.; Gubser, A. J.; Kim, J.; Jiang, Y. Z.; Velarde, G.; Huang, Y. L.; Hwang, H. Y. et al. Beyond substrates: Strain engineering of ferroelectric membranes. Adv. Mater. 2020, 32, 2003780–2003789.

[48]

Ko, D. L.; Tsai, M. F.; Chen, J. W.; Shao, P. W.; Tan, Y. Z.; Wang, J. J.; Ho, S. Z.; Lai, Y. H.; Chueh, Y. L.; Chen, Y. C. et al. Mechanically controllable nonlinear dielectrics. Sci. Adv. 2020, 6, eaaz3180.

Nano Research
Pages 5065-5072
Cite this article:
Mo S-T, Feng K-M, Pang J-L, et al. All-inorganic transparent Hf0.85Ce0.15O2 ferroelectric thin films with high flexibility and stability. Nano Research, 2023, 16(4): 5065-5072. https://doi.org/10.1007/s12274-022-5074-z
Topics:

1056

Views

11

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 07 July 2022
Revised: 08 September 2022
Accepted: 19 September 2022
Published: 19 October 2022
© Tsinghua University Press 2022
Return