AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

On the voltage behavior of quantum dot light-emitting diode

Xiangwei Qu1,2,§Jingrui Ma1,2,§Pai Liu1,2Kai Wang1,2Xiao Wei Sun1,2( )
Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

§ Xiangwei Qu and Jingrui Ma contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

We observe distinct voltage sweep behavior of red quantum dot light-emitting diode with different electron transport layer. The efficiency drop of ZnMgO device is related to hole leakage mediated by trap state on ZnMgO nanoparticles, while it raises for ZnO device due to suppressed electron leakage.

Abstract

The origin of the efficiency drop of quantum dot light-emitting diode (QLED) under consecutive voltage sweeps is still a puzzle. In this work, we report the voltage sweep behavior of QLED. We observed the efficiency drop of red QLED with ZnMgO electron transport layer (ETL) under consecutive voltage sweeps. In contrast, the efficiency increases for ZnO ETL device. By analyzing the electrical characteristics of both devices and surface traps of ZnMgO and ZnO nanoparticles, we found the efficiency drop of ZnMgO device is related to the hole leakage mediated by trap state on ZnMgO nanoparticles. For ZnO device, the efficiency raise is due to suppressed electron leakage. The hole leakage also causes rapid lifetime degradation of ZnMgO device. However, the efficiency and lifetime degradation of ZnMgO device can be eliminated with shelf aging. Our work reveals the distinct voltage sweep behavior of QLED based on different ETLs and may help to understand the lifetime degradation mechanism in QLED.

Electronic Supplementary Material

Download File(s)
12274_2022_5106_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[2]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[3]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[4]

Liu, D. Q.; Cao, S.; Wang, S. Y.; Wang, H. Q.; Dai, W.; Zou, B. S.; Zhao, J. L.; Wang, Y. J. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J. Phys. Chem. Lett. 2020, 11, 3111–3115.

[5]

Jia, S. Q.; Tang, H. D.; Ma, J. R.; Ding, S. H.; Qu, X. W.; Xu, B.; Wu, Z. H.; Li, G. Y.; Liu, P.; Wang, K. et al. High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability. Adv. Opt. Mater. 2021, 9, 2101069.

[6]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[7]

Shen, H. B.; Lin, Q. L.; Cao, W. R.; Yang, C. C.; Shewmon, N. T.; Wang, H. Z.; Niu, J. Z.; Li, L. S.; Xue, J. G. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale 2017, 9, 13583–13591.

[8]

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

[9]

Wang, F. F.; Hua, Q. Z.; Lin, Q. L.; Zhang, F. J.; Chen, F.; Zhang, H. M.; Zhu, X. X.; Xue, X. L.; Xu, X. P.; Shen, H. B. et al. High-performance blue quantum-dot light-emitting diodes by alleviating electron trapping. Adv. Opt. Mater. 2022, 10, 2200319.

[10]

Chrzanowski, M.; Zatryb, G.; Sitarek, P.; Podhorodecki, A. Effect of air exposure of ZnMgO nanoparticle electron transport layer on efficiency of quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 20305–20312.

[11]

Wang, L. X.; Tang, C. G.; Tan, Z. S.; Phua, H. Y.; Chen, J.; Lei, W.; Png, R. Q.; Chua, L. L.; Ho, P. K. H. Double-type-I charge-injection heterostructure for quantum-dot light-emitting diodes. Mater. Horiz. 2022, 9, 2147–2159.

[12]

Kong, L. M.; Wu, J. L.; Li, Y. G.; Cao, F.; Wang, F. J.; Wu, Q. Q.; Shen, P. Y.; Zhang, C. X.; Luo, Y.; Wang, L. et al. Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Sci. Bull. 2022, 67, 529–536.

[13]

Wu, Q. Q.; Gong, X. W.; Zhao, D. W.; Zhao, Y. B.; Cao, F.; Wang, H. R.; Wang, S.; Zhang, J. H.; Quintero-Bermudez, R.; Sargent, E. H. et al. Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Adv. Mater. 2022, 34, 2108150.

[14]

Wu, Q. Q.; Cao, F.; Wang, S.; Wang, Y. M.; Sun, Z. J.; Feng, J. W.; Liu, Y.; Wang, L.; Cao, Q.; Li, Y. G. et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv. Sci. 2022, 9, 2200959.

[15]

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q. Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

[16]

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

[17]

Chen, Z. N.; Su, Q.; Qin, Z. Y.; Chen, S. M. Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Res. 2021, 14, 320–327.

[18]

Peng, H.; Yu, A. R.; Liu, S. B.; He, Y.; Chen, X. Q.; Hu, Y. M.; Zeng, Q.; Qin, J. J.; Tang, Y. J.; Xuxie, H. N. et al. Coulomb effect induced intrinsic degradation in OLED. Org. Electron. 2019, 65, 370–374.

[19]

Hu, C.; Wang, Q.; Bai, S.; Xu, M.; He, D. Y.; Lyu, D. Y.; Qi, J. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Appl. Phys. Lett. 2017, 110, 073501.

[20]

Chen, J. Y.; Hsin, C. L.; Huang, C. W.; Chiu, C. H.; Huang, Y. T.; Lin, S. J.; Wu, W. W.; Chen, L. J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013, 13, 3671–3677.

[21]

Chang, W. Y.; Huang, H. W.; Wang, W. T.; Hou, C. H.; Chueh, Y. L.; He, J. H. High uniformity of resistive switching characteristics in a Cr/ZnO/Pt device. J. Electrochem. Soc. 2012, 159, G29–G32.

[22]

Xu, N.; Liu, L. F.; Sun, X.; Liu, X. Y.; Han, D. D.; Wang, Y.; Han, R. Q.; Kang, J. F.; Yu, B. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 2008, 92, 232112.

[23]

Simanjuntak, F. M.; Ohno, T.; Samukawa, S. Neutral oxygen beam treated ZnO-based resistive switching memory device. ACS Appl. Electron. Mater. 2019, 1, 18–24.

[24]

Lee, H.; Jeong, B. G.; Bae, W. K.; Lee, D. C.; Lim, J. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 2021, 12, 5669.

[25]

Chang, J. H.; Park, P.; Jung, H.; Jeong, B. G.; Hahm, D.; Nagamine, G.; Ko, J.; Cho, J.; Padilha, L. A.; Lee, D. C. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 2018, 12, 10231–10239.

[26]

Lu, J. F.; Xu, C. X.; Dai, J.; Li, J. T.; Wang, Y. Y.; Lin, Y.; Li, P. L. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 2015, 7, 3396–3403.

[27]

Zhou, H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B. K.; Kaczmarczyk, G.; Hoffmann, A. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 2002, 80, 210–212.

[28]

Nair, S. V.; Sinha, S.; Rustagi, K. C. Quantum size effects in spherical semiconductor microcrystals. Phys. Rev. B 1987, 35, 4098–4101.

[29]

Zhang, W. J.; Chen, X. T.; Ma, Y. H.; Xu, Z. W.; Wu, L. J.; Yang, Y. X.; Tsang, S. W.; Chen, S. Positive aging effect of ZnO nanoparticles induced by surface stabilization. J. Phys. Chem. Lett. 2020, 11, 5863–5870.

[30]

Ding, S. H.; Wu, Z. H.; Qu, X. W.; Tang, H. D.; Wang, K.; Xu, B.; Sun, X. W. Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 093501.

Nano Research
Pages 5511-5516
Cite this article:
Qu X, Ma J, Liu P, et al. On the voltage behavior of quantum dot light-emitting diode. Nano Research, 2023, 16(4): 5511-5516. https://doi.org/10.1007/s12274-022-5106-8
Topics:

875

Views

10

Crossref

10

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 05 August 2022
Revised: 04 September 2022
Accepted: 26 September 2022
Published: 12 October 2022
© Tsinghua University Press 2022
Return