Graphical Abstract

Supported gold (Au) nanocatalysts have long played an important role in numerous heterogeneous catalysis. However, the dominant difficulty of poor thermodynamic stability hampers its practical application. Herein, a core–shell structured Au nanocatalyst with Au nanoparticles (NPs) confined in boron nitride (BN) shells is proposed for enhanced thermodynamic stability. The two-dimensional porous structure of BN not only functions as a physical separator for the sintering resistance of Au NPs, but also provides a microchannel for catalytic reaction substrates. Besides, owing to the confinement effect, a strengthened interaction between well-designed Au NPs and the BN can be expected, which further boosts the stability and catalytic activity. Detailed experiments show that a proper BN shell thickness is important to maintain the balance between the sintering resistance and catalytic activity. A significantly boosted performance of 97.2% conversion in oxidative desulfurization (ODS) was obtained with a proper number of BN coating layers, outperforming the one with a thicker BN shell. Moreover, the recyclability of the prepared catalyst was investigated with no obvious decrease in catalytic performance after 10 runs, greatly higher than that without a BN shell, suggesting excellent durability.
Zhou, X. Y.; Wang, T. Y.; Liu, H.; Gao, X. C.; Wang, C. Y.; Wang, G. X. Desulfurization through photocatalytic oxidation: A critical review. ChemSusChem 2021, 14, 492–511.
Rajendran, A.; Cui, T. Y.; Fan, H. X.; Yang, Z. F.; Feng, J.; Li, W. Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 2020, 8, 2246–2285.
Kang, X.; Liu, J. C.; Tian, C. G.; Wang, D. X.; Li, Y. R.; Zhang, H. Y.; Cheng, X. S.; Wu, A. P.; Fu, H. G. Surface curvature-confined strategy to ultrasmall nickel–molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 2020, 13, 882–890.
Wang, S.; Zhang, X.; Chang, X.; Zong, M. Y.; Fan, C. Z.; Guo, D. X.; Xu, J.; Wang, D. H.; Bu, X. H. Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Appl. Catal. B: Environ. 2021, 298, 120594.
Xu, J. C.; Zhang, B.; Lu, Y. K.; Wang, L. G.; Tao, W. Y.; Teng, X.; Ning, W. S.; Zhang, Z. K. Adsorption desulfurization performance of PdO/SiO2@graphene oxide hybrid aerogel: Influence of graphene oxide. J. Hazard. Mater. 2022, 421, 126680.
Zhang, P.; Xu, Y. Y.; Guo, K. L.; Yin, Y.; Wang, J. L.; Zeng, Y. P. Hierarchical-pore UiO-66 modified with Ag+ for π-complexation adsorption desulfurization. J. Hazard. Mater. 2021, 418, 126247.
Dong, L.; Dai, X.; Peng, C.; Yang, C. T.; Li, G. Q.; Chen, S. B.; Miao, G.; Xiao, J. Ultra-deep catalytic adsorptive desulfurization of diesel fuel using Ti–silica gel adsorbent at low Ti-loading. AIChE J. 2022, 68, e17493.
Tong, Y. B.; Li, J. Q.; Peng, J. C.; Dong, D. D.; He, F.; Zhu, M. Y.; Huang, C. F. Synergistic desulfurization over graphitic N and enzyme-like Fe-N sites of Fe-N-C. Chem. Eng. J. 2022, 430, 132657.
Yi, Z. G.; Ma, X. G.; Song, J. H.; Yang, X. R.; Tang, Q. Investigations in enhancement biodesulfurization of model compounds by ultrasound pre-oxidation. Ultrason. Sonochem. 2019, 54, 110–120.
Etemadi, N.; Sepahy, A. A.; Mohebali, G.; Yazdian, F.; Omidi, M. Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 2018, 120, 1801–1809.
Dharaskar, S.; Desai, K.; Tadi, K. K.; Sillanpää, M. Synthesis, characterization and application of trihexyl (tetradecyl) phosphonium bromide as a promising solvent for sulfur extraction from liquid fuels. Ind. Eng. Chem. Res. 2021, 60, 16769–16779.
Khan, N.; Srivastava, V. C. Quaternary ammonium salts-based deep eutectic solvents: Utilization in extractive desulfurization. Energy Fuels 2021, 35, 12734–12745.
Dana, M.; Shahhosseini, S.; Sobati, M. A.; Ansari, A. R.; Asadollahzadeh, M. Optimization of extractive desulfurization of diesel oil in a continuous oldshue–rushton column pilot plant. Energy Fuels 2020, 34, 1041–1052.
Chen, K.; Zhang, X. M.; Yang, X. F.; Jiao, M. G.; Zhou, Z.; Zhang, M. H.; Wang, D. H.; Bu, X. H. Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization. Appl. Catal. B: Environ. 2018, 238, 263–273.
Ye, G.; Wang, H. L.; Chen, W. X.; Chu, H. Q.; Wei, J. S.; Wang, D. G.; Wang, J.; Li, Y. D. In situ implanting of single tungsten sites into defective UiO-66(Zr) by solvent-free route for efficient oxidative desulfurization at room temperature. Angew. Chem., Int. Ed. 2021, 60, 20318–20324.
Astle, M. A.; Rance, G. A.; Loughlin, H. J.; Peters, T. D.; Khlobystov, A. N. Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels. Adv. Funct. Mater. 2019, 29, 1808092.
Li, K. L.; Cui, W.; Li, J. Y.; Sun, Y. J.; Chu, Y. H.; Jiang, G. M.; Zhou, Y.; Zhang, Y. X.; Dong, F. Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4. Chem. Eng. J. 2019, 378, 122184.
Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.
Huang, X. Y.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R. J.; Pattisson, S.; Daniel, I. T.; Miedziak, P. J.; Shaw, G. et al. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603, 271–275.
Qi, G. D.; Davies, T. E.; Nasrallah, A.; Sainna, M. A.; Howe, A. G. R.; Lewis, R. J.; Quesne, M.; Catlow, C. R. A.; Willock, D. J.; He, Q. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45–54.
Zhan, W. C.; He, Q.; Liu, X. F.; Guo, Y. L.; Wang, Y. Q.; Wang, L.; Guo, Y.; Borisevich, A. Y.; Zhang, J. S.; Lu, G. Z. et al. A sacrificial coating strategy toward enhancement of metal–support interaction for ultrastable Au nanocatalysts. J. Am. Chem. Soc. 2016, 138, 16130–16139.
Chen, S. J.; Fu, H. B.; Zhang, L.; Wan, Y. Nanospherical mesoporous carbon–supported gold as an efficient heterogeneous catalyst in the elimination of mass transport limitations. Appl. Catal. B: Environ. 2019, 248, 22–30.
Wang, Z. H.; Fu, H. F.; Tian, Z. W.; Han, D. M.; Gu, F. B. Strong metal–support interaction in novel core–shell Au–CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation. Nanoscale 2016, 8, 5865–5872.
Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size-dependent strong metal–support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.
Wu, P. W.; Tan, S.; Moon, J.; Yan, Z. H.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y. Q.; Abney, C. W.; Wu, Z. L. et al. Harnessing strong metal–support interactions via a reverse route. Nat. Commun. 2020, 11, 3042.
Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.
Gao, L. J.; Fu, Q.; Wei, M. M.; Zhu, Y. F.; Liu, Q.; Crumlin, E.; Liu, Z.; Bao, X. H. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catal. 2016, 6, 6814–6822.
Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490–3498.
Wu, P. W.; Lu, L. J.; He, J.; Chen, L. L.; Chao, Y. H.; He, M. Q.; Zhu, F. X.; Chu, X. Z.; Li, H. M.; Zhu, W. S. Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy Environ. 2020, 5, 166–172.
Wu, H. F.; Chao, Y. H.; Xia, G. H.; Luo, J.; Tao, D. J.; Zhu, L. H.; Luo, G. L.; Huang, Y.; Hua, M. Q.; Zhu, W. S. Enhanced adsorption performance for antibiotics by alcohol-solvent mediated boron nitride nanosheets. Rare Met. 2022, 41, 342–352.
Guo, F. S.; Yang, P. J.; Pan, Z. M.; Cao, X. N.; Xie, Z. L.; Wang, X. C. Carbon-doped bn nanosheets for the oxidative dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2017, 56, 8231–8235.
Zhu, W. S.; Wu, Z. L.; Foo, G. S.; Gao, X.; Zhou, M. X.; Liu, B.; Veith, G. M.; Wu, P. W.; Browning, K. L.; Lee, H. N. et al. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nat. Commun. 2017, 8, 15291.
Wu, P. W.; Wu, Y. C.; Chen, L. L.; He, J.; Hua, M. Q.; Zhu, F. X.; Chu, X. Z.; Xiong, J.; He, M. Q.; Zhu, W. S. et al. Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal–edge interactions between Pt and h-BN. Chem. Eng. J. 2020, 380, 122526.
Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.
Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.
Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Res. 2017, 10, 1403–1412.
Smythe, N. C.; Gordon, J. C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem. 2010, 2010, 509–521.
Yan, Z. Y.; Lin, J.; Yuan, X. H.; Song, T.; Yu, C.; Liu, Z. Y.; He, X.; Liang, J. L.; Tang, C. C.; Huang, Y. Desulfurization of model oil by selective adsorption over porous boron nitride fibers with tailored microstructures. Sci. Rep. 2017, 7, 3297.
Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.
Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.
Arenal, R.; Ferrari, A. C.; Reich, S.; Wirtz, L.; Mevellec, J. Y.; Lefrant, S.; Rubio, A.; Loiseau, A. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 2006, 6, 1812–1816.
Weng, Q. H.; Wang, X. B.; Bando, Y.; Golberg, D. One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv. Energy Mater. 2014, 4, 1301525.
Wang, C.; Yi, Y. K.; Li, H. P.; Wu, P. W.; Li, M. T.; Jiang, W.; Chen, Z. G.; Li, H. M.; Zhu, W. S.; Dai, S. Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy 2020, 67, 104253.
Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.
Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C. T.; Wang, L. X.; Meng, X. J.; Li, B.; Su, D. S.; Xiao, F. S. Wet-chemistry strong metal–support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983.
Liu, W.; Xu, Q.; Cui, W. L.; Zhu, C. H.; Qi, Y. H. CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew. Chem., Int. Ed. 2017, 56, 1600–1604.
Bi, W.; Hu, Y. J.; Jiang, H.; Zhang, L.; Li, C. Z. Revealing the sudden alternation in Pt@h-BN nanoreactors for nearly 100% CO2-to-CH4 photoreduction. Adv. Funct. Mater. 2021, 31, 2010780.
Khayyat, S.; Selva Roselin, L. Photocatalytic degradation of benzothiophene and dibenzothiophene using supported gold nanoparticle. J. Saudi Chem. Soc. 2017, 21, 349–357.
Song, H. Y.; Li, G.; Wang, X. S.; Xu, Y. J. Characterization and catalytic performance of Au/Ti–HMS catalysts on the oxidative desulphurization using in situ H2O2: Effect of method catalysts preparation. Catal. Today 2010, 149, 127–131.
Song, H. Y.; Li, G.; Wang, X. S.; Chen, Y. Y. Characterization and catalytic performance of Au/Ti–HMS for direct generation of H2O2 and in situ-H2O2-ODS from H2 and O2: An in situ-reduction synthesis and a recycle study of catalyst. Micropor. Mesopor. Mat. 2011, 139, 104–109.
Fard, N. E.; Fazaeli, R.; Yousefi, M.; Abdolmohammadi, S. Oxidative desulfurization of dibenzothiophene using M/TiO2/MWW (M = Cu, Ag, and Au) composite. Russ. J. Phys. Chem. A 2021, 95, S23–S32.
Song, H. Y.; Li, G.; Wang, X. S. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulky sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Micropor. Mesopor. Mat. 2009, 120, 346–350.
Li, H. P.; Zhu, W. S.; Zhu, S. W.; Xia, J. X.; Chang, Y. H.; Jiang, W.; Zhang, M.; Zhou, Y. W.; Li, H. M. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AIChE J. 2016, 62, 2087–2100.
Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.
Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; Xie, Y. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J. Am. Chem. Soc. 2017, 139, 2468–2473.
Nisar, A.; Lu, Y.; Zhuang, J.; Wang, X. Polyoxometalate nanocone nanoreactors: Magnetic manipulation and enhanced catalytic performance. Angew. Chem., Int. Ed. 2011, 50, 3187–3192.