AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stable Au nanoparticles confined in boron nitride shells for optimizing oxidative desulfurization

Linjie Lu1,2Jing He1Peiwen Wu1( )Yang Sun1Mingqing Hua1Peng Cui1Wenshuai Zhu1,2( )Huaming Li1Zhichang Liu2Chunming Xu2
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
Show Author Information

Graphical Abstract

Two-dimensional porous boron nitride functions as the outer shell for improving the sintering-resistance of gold nanoparticles (Au NPs). The confinement effect endows Au nanocatalysts more efficient in aerobic oxidation.

Abstract

Supported gold (Au) nanocatalysts have long played an important role in numerous heterogeneous catalysis. However, the dominant difficulty of poor thermodynamic stability hampers its practical application. Herein, a core–shell structured Au nanocatalyst with Au nanoparticles (NPs) confined in boron nitride (BN) shells is proposed for enhanced thermodynamic stability. The two-dimensional porous structure of BN not only functions as a physical separator for the sintering resistance of Au NPs, but also provides a microchannel for catalytic reaction substrates. Besides, owing to the confinement effect, a strengthened interaction between well-designed Au NPs and the BN can be expected, which further boosts the stability and catalytic activity. Detailed experiments show that a proper BN shell thickness is important to maintain the balance between the sintering resistance and catalytic activity. A significantly boosted performance of 97.2% conversion in oxidative desulfurization (ODS) was obtained with a proper number of BN coating layers, outperforming the one with a thicker BN shell. Moreover, the recyclability of the prepared catalyst was investigated with no obvious decrease in catalytic performance after 10 runs, greatly higher than that without a BN shell, suggesting excellent durability.

Electronic Supplementary Material

Download File(s)
12274_2022_5113_MOESM1_ESM.pdf (5.6 MB)

References

[1]

Zhou, X. Y.; Wang, T. Y.; Liu, H.; Gao, X. C.; Wang, C. Y.; Wang, G. X. Desulfurization through photocatalytic oxidation: A critical review. ChemSusChem 2021, 14, 492–511.

[2]

Rajendran, A.; Cui, T. Y.; Fan, H. X.; Yang, Z. F.; Feng, J.; Li, W. Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 2020, 8, 2246–2285.

[3]

Kang, X.; Liu, J. C.; Tian, C. G.; Wang, D. X.; Li, Y. R.; Zhang, H. Y.; Cheng, X. S.; Wu, A. P.; Fu, H. G. Surface curvature-confined strategy to ultrasmall nickel–molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 2020, 13, 882–890.

[4]

Wang, S.; Zhang, X.; Chang, X.; Zong, M. Y.; Fan, C. Z.; Guo, D. X.; Xu, J.; Wang, D. H.; Bu, X. H. Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Appl. Catal. B: Environ. 2021, 298, 120594.

[5]

Xu, J. C.; Zhang, B.; Lu, Y. K.; Wang, L. G.; Tao, W. Y.; Teng, X.; Ning, W. S.; Zhang, Z. K. Adsorption desulfurization performance of PdO/SiO2@graphene oxide hybrid aerogel: Influence of graphene oxide. J. Hazard. Mater. 2022, 421, 126680.

[6]

Zhang, P.; Xu, Y. Y.; Guo, K. L.; Yin, Y.; Wang, J. L.; Zeng, Y. P. Hierarchical-pore UiO-66 modified with Ag+ for π-complexation adsorption desulfurization. J. Hazard. Mater. 2021, 418, 126247.

[7]

Dong, L.; Dai, X.; Peng, C.; Yang, C. T.; Li, G. Q.; Chen, S. B.; Miao, G.; Xiao, J. Ultra-deep catalytic adsorptive desulfurization of diesel fuel using Ti–silica gel adsorbent at low Ti-loading. AIChE J. 2022, 68, e17493.

[8]

Tong, Y. B.; Li, J. Q.; Peng, J. C.; Dong, D. D.; He, F.; Zhu, M. Y.; Huang, C. F. Synergistic desulfurization over graphitic N and enzyme-like Fe-N sites of Fe-N-C. Chem. Eng. J. 2022, 430, 132657.

[9]

Yi, Z. G.; Ma, X. G.; Song, J. H.; Yang, X. R.; Tang, Q. Investigations in enhancement biodesulfurization of model compounds by ultrasound pre-oxidation. Ultrason. Sonochem. 2019, 54, 110–120.

[10]

Etemadi, N.; Sepahy, A. A.; Mohebali, G.; Yazdian, F.; Omidi, M. Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 2018, 120, 1801–1809.

[11]

Dharaskar, S.; Desai, K.; Tadi, K. K.; Sillanpää, M. Synthesis, characterization and application of trihexyl (tetradecyl) phosphonium bromide as a promising solvent for sulfur extraction from liquid fuels. Ind. Eng. Chem. Res. 2021, 60, 16769–16779.

[12]

Khan, N.; Srivastava, V. C. Quaternary ammonium salts-based deep eutectic solvents: Utilization in extractive desulfurization. Energy Fuels 2021, 35, 12734–12745.

[13]

Dana, M.; Shahhosseini, S.; Sobati, M. A.; Ansari, A. R.; Asadollahzadeh, M. Optimization of extractive desulfurization of diesel oil in a continuous oldshue–rushton column pilot plant. Energy Fuels 2020, 34, 1041–1052.

[14]

Chen, K.; Zhang, X. M.; Yang, X. F.; Jiao, M. G.; Zhou, Z.; Zhang, M. H.; Wang, D. H.; Bu, X. H. Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization. Appl. Catal. B: Environ. 2018, 238, 263–273.

[15]

Ye, G.; Wang, H. L.; Chen, W. X.; Chu, H. Q.; Wei, J. S.; Wang, D. G.; Wang, J.; Li, Y. D. In situ implanting of single tungsten sites into defective UiO-66(Zr) by solvent-free route for efficient oxidative desulfurization at room temperature. Angew. Chem., Int. Ed. 2021, 60, 20318–20324.

[16]

Astle, M. A.; Rance, G. A.; Loughlin, H. J.; Peters, T. D.; Khlobystov, A. N. Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels. Adv. Funct. Mater. 2019, 29, 1808092.

[17]

Li, K. L.; Cui, W.; Li, J. Y.; Sun, Y. J.; Chu, Y. H.; Jiang, G. M.; Zhou, Y.; Zhang, Y. X.; Dong, F. Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4. Chem. Eng. J. 2019, 378, 122184.

[18]

Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

[19]

Huang, X. Y.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R. J.; Pattisson, S.; Daniel, I. T.; Miedziak, P. J.; Shaw, G. et al. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603, 271–275.

[20]

Qi, G. D.; Davies, T. E.; Nasrallah, A.; Sainna, M. A.; Howe, A. G. R.; Lewis, R. J.; Quesne, M.; Catlow, C. R. A.; Willock, D. J.; He, Q. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45–54.

[21]

Zhan, W. C.; He, Q.; Liu, X. F.; Guo, Y. L.; Wang, Y. Q.; Wang, L.; Guo, Y.; Borisevich, A. Y.; Zhang, J. S.; Lu, G. Z. et al. A sacrificial coating strategy toward enhancement of metal–support interaction for ultrastable Au nanocatalysts. J. Am. Chem. Soc. 2016, 138, 16130–16139.

[22]

Chen, S. J.; Fu, H. B.; Zhang, L.; Wan, Y. Nanospherical mesoporous carbon–supported gold as an efficient heterogeneous catalyst in the elimination of mass transport limitations. Appl. Catal. B: Environ. 2019, 248, 22–30.

[23]

Wang, Z. H.; Fu, H. F.; Tian, Z. W.; Han, D. M.; Gu, F. B. Strong metal–support interaction in novel core–shell Au–CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation. Nanoscale 2016, 8, 5865–5872.

[24]

Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size-dependent strong metal–support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.

[25]

Wu, P. W.; Tan, S.; Moon, J.; Yan, Z. H.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y. Q.; Abney, C. W.; Wu, Z. L. et al. Harnessing strong metal–support interactions via a reverse route. Nat. Commun. 2020, 11, 3042.

[26]

Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.

[27]

Gao, L. J.; Fu, Q.; Wei, M. M.; Zhu, Y. F.; Liu, Q.; Crumlin, E.; Liu, Z.; Bao, X. H. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catal. 2016, 6, 6814–6822.

[28]

Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490–3498.

[29]

Wu, P. W.; Lu, L. J.; He, J.; Chen, L. L.; Chao, Y. H.; He, M. Q.; Zhu, F. X.; Chu, X. Z.; Li, H. M.; Zhu, W. S. Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy Environ. 2020, 5, 166–172.

[30]

Wu, H. F.; Chao, Y. H.; Xia, G. H.; Luo, J.; Tao, D. J.; Zhu, L. H.; Luo, G. L.; Huang, Y.; Hua, M. Q.; Zhu, W. S. Enhanced adsorption performance for antibiotics by alcohol-solvent mediated boron nitride nanosheets. Rare Met. 2022, 41, 342–352.

[31]

Guo, F. S.; Yang, P. J.; Pan, Z. M.; Cao, X. N.; Xie, Z. L.; Wang, X. C. Carbon-doped bn nanosheets for the oxidative dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2017, 56, 8231–8235.

[32]

Zhu, W. S.; Wu, Z. L.; Foo, G. S.; Gao, X.; Zhou, M. X.; Liu, B.; Veith, G. M.; Wu, P. W.; Browning, K. L.; Lee, H. N. et al. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nat. Commun. 2017, 8, 15291.

[33]

Wu, P. W.; Wu, Y. C.; Chen, L. L.; He, J.; Hua, M. Q.; Zhu, F. X.; Chu, X. Z.; Xiong, J.; He, M. Q.; Zhu, W. S. et al. Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal–edge interactions between Pt and h-BN. Chem. Eng. J. 2020, 380, 122526.

[34]

Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.

[35]

Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

[36]

Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Res. 2017, 10, 1403–1412.

[37]

Smythe, N. C.; Gordon, J. C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem. 2010, 2010, 509–521.

[38]

Yan, Z. Y.; Lin, J.; Yuan, X. H.; Song, T.; Yu, C.; Liu, Z. Y.; He, X.; Liang, J. L.; Tang, C. C.; Huang, Y. Desulfurization of model oil by selective adsorption over porous boron nitride fibers with tailored microstructures. Sci. Rep. 2017, 7, 3297.

[39]

Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

[40]

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

[41]

Arenal, R.; Ferrari, A. C.; Reich, S.; Wirtz, L.; Mevellec, J. Y.; Lefrant, S.; Rubio, A.; Loiseau, A. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 2006, 6, 1812–1816.

[42]

Weng, Q. H.; Wang, X. B.; Bando, Y.; Golberg, D. One-step template-free synthesis of highly porous boron nitride microsponges for hydrogen storage. Adv. Energy Mater. 2014, 4, 1301525.

[43]

Wang, C.; Yi, Y. K.; Li, H. P.; Wu, P. W.; Li, M. T.; Jiang, W.; Chen, Z. G.; Li, H. M.; Zhu, W. S.; Dai, S. Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy 2020, 67, 104253.

[44]

Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

[45]

Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C. T.; Wang, L. X.; Meng, X. J.; Li, B.; Su, D. S.; Xiao, F. S. Wet-chemistry strong metal–support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983.

[46]

Liu, W.; Xu, Q.; Cui, W. L.; Zhu, C. H.; Qi, Y. H. CO2-assisted fabrication of two-dimensional amorphous molybdenum oxide nanosheets for enhanced plasmon resonances. Angew. Chem., Int. Ed. 2017, 56, 1600–1604.

[47]

Bi, W.; Hu, Y. J.; Jiang, H.; Zhang, L.; Li, C. Z. Revealing the sudden alternation in Pt@h-BN nanoreactors for nearly 100% CO2-to-CH4 photoreduction. Adv. Funct. Mater. 2021, 31, 2010780.

[48]

Khayyat, S.; Selva Roselin, L. Photocatalytic degradation of benzothiophene and dibenzothiophene using supported gold nanoparticle. J. Saudi Chem. Soc. 2017, 21, 349–357.

[49]

Song, H. Y.; Li, G.; Wang, X. S.; Xu, Y. J. Characterization and catalytic performance of Au/TiHMS catalysts on the oxidative desulphurization using in situ H2O2: Effect of method catalysts preparation. Catal. Today 2010, 149, 127–131.

[50]

Song, H. Y.; Li, G.; Wang, X. S.; Chen, Y. Y. Characterization and catalytic performance of Au/TiHMS for direct generation of H2O2 and in situ-H2O2-ODS from H2 and O2: An in situ-reduction synthesis and a recycle study of catalyst. Micropor. Mesopor. Mat. 2011, 139, 104–109.

[51]

Fard, N. E.; Fazaeli, R.; Yousefi, M.; Abdolmohammadi, S. Oxidative desulfurization of dibenzothiophene using M/TiO2/MWW (M = Cu, Ag, and Au) composite. Russ. J. Phys. Chem. A 2021, 95, S23–S32.

[52]

Song, H. Y.; Li, G.; Wang, X. S. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulky sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Micropor. Mesopor. Mat. 2009, 120, 346–350.

[53]

Li, H. P.; Zhu, W. S.; Zhu, S. W.; Xia, J. X.; Chang, Y. H.; Jiang, W.; Zhang, M.; Zhou, Y. W.; Li, H. M. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AIChE J. 2016, 62, 2087–2100.

[54]

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

[55]

Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; Xie, Y. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J. Am. Chem. Soc. 2017, 139, 2468–2473.

[56]

Nisar, A.; Lu, Y.; Zhuang, J.; Wang, X. Polyoxometalate nanocone nanoreactors: Magnetic manipulation and enhanced catalytic performance. Angew. Chem., Int. Ed. 2011, 50, 3187–3192.

Nano Research
Pages 12076-12083
Cite this article:
Lu L, He J, Wu P, et al. Stable Au nanoparticles confined in boron nitride shells for optimizing oxidative desulfurization. Nano Research, 2023, 16(10): 12076-12083. https://doi.org/10.1007/s12274-022-5113-9
Topics:
Part of a topical collection:

5416

Views

6

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 10 June 2022
Revised: 07 September 2022
Accepted: 29 September 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return