Sort:
Research Article Issue
Stable Au nanoparticles confined in boron nitride shells for optimizing oxidative desulfurization
Nano Research 2023, 16(10): 12076-12083
Published: 29 November 2022
Abstract PDF (9.4 MB) Collect
Downloads:70

Supported gold (Au) nanocatalysts have long played an important role in numerous heterogeneous catalysis. However, the dominant difficulty of poor thermodynamic stability hampers its practical application. Herein, a core–shell structured Au nanocatalyst with Au nanoparticles (NPs) confined in boron nitride (BN) shells is proposed for enhanced thermodynamic stability. The two-dimensional porous structure of BN not only functions as a physical separator for the sintering resistance of Au NPs, but also provides a microchannel for catalytic reaction substrates. Besides, owing to the confinement effect, a strengthened interaction between well-designed Au NPs and the BN can be expected, which further boosts the stability and catalytic activity. Detailed experiments show that a proper BN shell thickness is important to maintain the balance between the sintering resistance and catalytic activity. A significantly boosted performance of 97.2% conversion in oxidative desulfurization (ODS) was obtained with a proper number of BN coating layers, outperforming the one with a thicker BN shell. Moreover, the recyclability of the prepared catalyst was investigated with no obvious decrease in catalytic performance after 10 runs, greatly higher than that without a BN shell, suggesting excellent durability.

Open Access Research Article Issue
Engineering 3D-printed aqueous colloidal ceramic slurry for direct ink writing
Green Chemical Engineering 2023, 4(1): 73-80
Published: 01 May 2022
Abstract PDF (3.4 MB) Collect
Downloads:7

The construction of rapid prototyping for structured ceramics has a promoting effect on potential applications. In this work, engineering slurry with different formulations were used to develop aqueous colloidal ceramic slurry for direct ink writing (DIW). Optimized slurry of Formulation 5 possessed good printing effect for DIW with stable mechanical properties. Related characteristics, including shrinkage, compressive strength, rheological behavior, and chemical property, were also examined. DIW ceramics prepared from optimized slurry can be preliminarily applied to adsorption of Rhodamine B and chlortetracycline, and possessed the advantages of easy separation and operation compared with powder adsorbents. This work provides a strategy for the design of 3D-printed kaolin ceramic slurry, and also extends to potential application in adsorption.

Total 2