Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aqueous zinc ion batteries (AZIBs) are ideal candidates for large-scale battery storage, with a high theoretical specific capacity, ecological friendliness, and extremely low cost but are strongly hindered by zinc dendrite growth. Herein, Ni-Zn alloy is artificially constructed as a solid-electrolyte interface (SEI) for Zn anodes by electrodeposition and annealing. The Ni-Zn alloy layer acts as a dynamic shield at the electrode/electrolyte interface. Interestingly, the zinc atoms migrate out of the electrode body during zinc stripping while merging into the electrode body during the plating. In this way, the Ni-Zn alloy is able to guide the zinc deposition in the horizontal direction, thereby suppressing the formation of dendrite. Benefiting from those, the Ni-Zn alloy symmetric cell shows a greatly improved cycle life and is able to operate stably for 1,900 h at a current density of 0.5 mA·cm−2. The present study is a strategy for negative electrode protection of AZIBs.
Yang, Y.; Huang, G. Y.; Xu, S. M.; He, Y. H.; Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2016, 165, 390–396.
Vishvakarma, S.; Dhawan, N. Recovery of cobalt and lithium values from discarded Li-ion batteries. J. Sustainable Metall. 2019, 5, 204–209.
Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Ao, H. S.; Liu, M. K.; Zhu, Y. C.; Qian, Y. T. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion. Small 2020, 16, 2001228.
Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 2017, 5, 730–738.
Hou, Z. G.; Mao, W. T.; Zhang, Z. X.; Chen, J. W.; Ao, H. S.; Qian, Y. T. Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 2022, 15, 5072–5080.
Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.
Dai, Y. H.; Li, J. H.; Chen, L. N.; Le, K. H.; Cai, Z. J.; An, Q. Y.; Zhang, L.; Mai, L. Q. Generating H+ in catholyte and OH− in anolyte: An approach to improve the stability of aqueous zinc-ion batteries. ACS Energy Lett. 2021, 6, 684–686.
Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.
Jian, Q. P.; Wan, Y. H.; Sun, J.; Wu, M. C.; Zhao, T. S. A dendrite-free zinc anode for rechargeable aqueous batteries. J. Mater. Chem. A 2020, 8, 20175–20184.
An, Y. L.; Tian, Y.; Zhang, K.; Liu, Y. P.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 2021, 31, 2101886.
Liu, H. Z.; Li, J. H.; Zhang, X. N.; Liu, X. X.; Yan, Y.; Chen, F. J.; Zhang, G. H.; Duan, H. G. Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2106550.
An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.
Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y. et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496.
Zhang, Y. M.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y. T.; Liu, N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021, 6, 404–412.
He, P.; Huang, J. X. Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 2021, 6, 1990–1995.
Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.
Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.
Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 2020, 28, 205–215.
Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.
Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.
Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.
Wang, J. W.; Yang, Y.; Zhang, Y. X.; Li, Y. M.; Sun, R.; Wang, Z. C.; Wang, H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021, 35, 19–46.
Ieffa, S.; Bernasconi, R.; Nobili, L.; Cavallotti, P. L.; Magagnin, L. Direct and pulse plating of metastable Zn-Ni alloys. Trans. IMF 2014, 92, 321–324.
Bernasconi, R.; Panzeri, G.; Firtin, G.; Kahyaoglu, B.; Nobili, L.; Magagnin, L. Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection. J. Phys. Chem. B 2020, 124, 10739–10751.
Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.
Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.
Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.
Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.
Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Smidstrup, S.; Pedersen, A.; Stokbro, K.; Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 2014, 140, 214106.
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.
Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 2002, 114, 10024–10035.
Abou-Krisha, M. M.; Assaf, F. H.; Alduaij, O. K.; Eissa, A. A. Deposition potential influence on the electrodeposition of Zn-Ni-Mn alloy. Trans. Indian Inst. Met. 2017, 70, 31–40.
Zhang, D. D.; Shi, J. Y.; Qi, Y.; Wang, X. M.; Wang, H.; Li, M. R.; Liu, S. Z.; Li, C. Quasi-amorphous metallic nickel nanopowder as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Adv. Sci. (Weinh. ) 2018, 5, 1801216.
Chu, Y. Z.; Zhang, S.; Wu, S.; Hu, Z. L.; Cui, G. L.; Luo, J. Y. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy. Environ. Sci. 2021, 14, 3609–3620.
Jia, H.; Wang, Z. Q.; Dirican, M.; Qiu, S.; Chan, C. Y.; Fu, S. H.; Fei, B.; Zhang, X. W. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J. Mater. Chem. A 2021, 9, 5597–5605.
Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.
Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.
Zhai, S. L.; Wang, N.; Tan, X. H.; Jiang, K. R.; Quan, Z. Y.; Li, Y. W.; Li, Z. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv. Funct. Mater. 2021, 31, 2008894.
Wang, Y. Y.; Chen, Y. J.; Liu, W.; Ni, X. Y.; Qing, P.; Zhao, Q. W.; Wei, W. F.; Ji, X. B.; Ma, J. M.; Chen, L. B. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 2021, 9, 8452–8461.
Qian, Y.; Meng, C.; He, J. X.; Dong, X. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J. Power Sources 2020, 480, 228871.
Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.
Hong, L.; Wu, X. M.; Ma, C.; Huang, W.; Zhou, Y. F.; Wang, K. X.; Chen, J. S. Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 2021, 9, 16814–16823.
Guo, W.; Zhang, Y.; Tong, X.; Wang, X.; Zhang, L.; Xia, X.; Tu, J. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 2021, 20, 100675.
Liang, R. L.; Fu, J.; Deng, Y. P.; Pei, Y.; Zhang, M. W.; Yu, A. P.; Chen, Z. W. Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability. Energy Storage Mater. 2021, 36, 478–484.