AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy

Xuan Gao1,2Jing Feng1,2( )Kehong Lv1,2Yifei Zhou1,2Ruohao Zhang1,2Shuyan Song1,2Hongjie Zhang1,2,3 ( )Daguang Wang4( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Gastric and Intestinal Department, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
Show Author Information

Graphical Abstract

An intelligent nanocomposite with designed CeO2/CuO heterostructure anchored on upconversion nanoparticles and cancer cell membrane modification exhibits great cytotoxicity toward cancer cells to trigger combinative apoptosis and ferroptosis via synergistic synergistic photodynamic therapy (PDT)/chemodynamic therapy (CDT).

Abstract

Highly toxic reactive oxygen species (ROS) induced apoptosis and ferroptosis have been considered as significant cell death pathways for cancer therapy. However, insufficient amount of intracellular ROS extremely restricts the therapeutic effect. Toward this, we report a rationally designed nanocomposite (mUCC) with enhanced ROS generation ability, inducing the combination of apoptosis and ferroptosis through synergistic photodynamic therapy (PDT) and chemodynamic therapy (CDT). Under 808 nm near-infrared (NIR) light irradiation, photocatalytic reaction is triggered starting from the separation of electron–hole pairs on the surface of heterojunction (CeO2/CuO), realizing improved ROS production. Simultaneously, mUCC served as Fenton-like agent exhibits considerable ability to generate highly toxic ·OH under tumor microenvironment (TME). The boosted accumulation of ROS disrupts the redox balance within tumor cells and results in the integration of apoptosis and ferroptosis. In addition, mUCC shows satisfactory tumor targeting property benefiting from the cancer cell membrane functionalization under the guidance of magnetic resonance imaging (MRI) and NIR fluorescence imaging. The intelligent mUCC with good biocompatibility and excellent antitumor response achieves efficient tumor elimination under synergistic PDT and CDT. This work offers an elective approach for further development of ROS-based therapeutic nanoplatform in cancer therapy.

Electronic Supplementary Material

Download File(s)
12274_2022_5223_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Brown, S. B.; Brown, E. A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508.

[2]

Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

[3]

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. Ca Cancer J. Clin. 2011, 61, 250–281.

[4]

DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371.

[5]

Choi, J.; Sun, I. C.; Hwang, H. S.; Yoon, H. Y.; Kim, K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv. Drug Delivery Rev. 2022, 186, 114344.

[6]

Chen, C.; Wu, C. S.; Yu, J. M.; Zhu, X. H.; Wu, Y. H.; Liu, J. L.; Zhang, Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord. Chem. Rev. 2022, 461, 214495.

[7]

Xie, J. L.; Wang, Y. W.; Choi, W.; Jangili, P.; Ge, Y. Q.; Xu, Y. J.; Kang, J. L.; Liu, L. P.; Zhang, B.; Xie, Z. J. et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev. 2021, 50, 9152–9201.

[8]

Chen, H.; Wan, Y. P.; Cui, X.; Li, S. L.; Lee, C. S. Recent advances in hypoxia-overcoming strategy of aggregation-induced emission photosensitizers for efficient photodynamic therapy. Adv. Healthc. Mater. 2021, 10, 2101607.

[9]

Wang, Y. Y.; Liu, Y. C.; Sun, H. W.; Guo, D. S. Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord. Chem. Rev. 2019, 395, 46–62.

[10]

Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

[11]

McKenzie, L. K.; Bryant, H. E.; Weinstein, J. A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev. 2019, 379, 2–29.

[12]

Pham, T. C.; Nguyen, V. N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619.

[13]

Fan, J. X.; Liu, M. D.; Li, C. X.; Hong, S.; Zheng, D. W.; Liu, X. H.; Chen, S.; Cheng, H.; Zhang, X. Z. A metal-semiconductor nanocomposite as an efficient oxygen-independent photosensitizer for photodynamic tumor therapy. Nanoscale Horiz. 2017, 2, 349–355.

[14]

Younis, M. R.; He, G.; Qu, J. L.; Lin, J.; Huang, P.; Xia, X. H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 2021, 8, 2102587.

[15]

Rodríguez-Barajas, N.; Anaya-Esparza, L. M.; Villágran-De La Mora, Z.; Sánchez-Burgos, J. A.; Pérez-Larios, A. Review of therapies using TiO2 nanomaterials for increased anticancer capability. Anticancer Agents Med. Chem. 2022, 22, 2241–2254.

[16]

Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885–2911.

[17]

Zhen, W. Y.; Liu, Y.; Jia, X. D.; Wu, L.; Wang, C.; Jiang, X. E. Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horiz. 2019, 4, 720–726.

[18]

Cheng, Y.; Kong, X. P.; Chang, Y.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Gao, X. F.; Zhang, H. Y. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 2020, 32, 1908109.

[19]

Wang, K.; Zhang, Z.; Lin, L.; Chen, J.; Hao, K.; Tian, H. Y.; Chen, X. S. Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 2019, 31, 3313–3323.

[20]

Wang, Y.; Zhao, J. X.; Chen, Z.; Zhang, F.; Wang, Q.; Guo, W.; Wang, K.; Lin, H. M.; Qu, F. Y. Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials 2019, 217, 119282.

[21]

Li, S. L.; Jiang, P.; Jiang, F. L.; Liu, Y. Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy. Adv. Funct. Mater. 2021, 31, 2100243.

[22]

Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886–4893.

[23]

Tian, Q. W.; Xue, F. F.; Wang, Y. R.; Cheng, Y. Y.; An, L.; Yang, S. P.; Chen, X. Y.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.

[24]

Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

[25]

Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

[26]

Cao, C. Y.; Wang, X. R.; Yang, N.; Song, X. J.; Dong, X. C. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem. Sci. 2022, 13, 863–889.

[27]

Chen, J.; Chen, F.; Zhang, L.; Yang, Z. Y.; Deng, T.; Zhao, Y. F.; Zheng, T. Y.; Gan, X. L.; Zhong, H. T.; Geng, Y. Q. et al. Self-assembling porphyrins as a single therapeutic agent for synergistic cancer therapy: A one stone three birds strategy. ACS Appl. Mater. Interfaces 2021, 13, 27856–27867.

[28]

Zhang, L.; Li, C. X.; Wan, S. S.; Zhang, X. Z. Nanocatalyst-mediated chemodynamic tumor therapy. Adv. Healthc. Mater. 2022, 11, 2101971.

[29]
Fu, J. T.; Zhou, Y. X.; Liu, T.; Wang, W. H.; Zhao, Y. T.; Sun, Y.; Zhang, Y. M.; Qin, W. X.; Chen, Z. W.; Lu, C. et al. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Res., in press, https://doi.org/10.1007/s12274-022-4854-9.
[30]

Liang, L.; Duan, Y.; Xiong, Y.; Zuo, W.; Ye, F.; Zhao, S. Synergistic cocatalytic effect of MoO3 and creatinine on Cu-Fenton reactions for efficient decomposition of H2O2. Mater. Today Chem. 2022, 24, 100805.

[31]

Zhang, R. Y.; Liu, T.; Li, W. Z.; Ma, Z. Y.; Pei, P.; Zhang, W. W.; Yang, K.; Tao, Y. G. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J. Nanobiotechnol. 2022, 20, 223.

[32]

Zhu, H. J.; Huang, S. Y.; Ding, M. B.; Li, Z. B.; Li, J. C.; Wang, S. H.; Leong, D. T. Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. ACS Appl. Mater. Interfaces 2022, 14, 25183–25196.

[33]

Qian, Y.; Zhang, J. H.; Zou, J. L.; Wang, X. Y.; Meng, X. F.; Liu, H. J.; Lin, Y. F.; Chen, Q. W.; Sun, L.; Lin, W. C. et al. NIR-II responsive PEGylated nickel nanoclusters for photothermal enhanced chemodynamic synergistic oncotherapy. Theranostics 2022, 12, 3690–3702.

[34]

Yang, N.; Zhang, T.; Cao, C. Y.; Mao, G. X.; Shao, J. J.; Song, X. J.; Wang, W. J.; Mou, X. Z.; Dong, X. C. BSA stabilized photothermal-Fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Res. 2022, 15, 2235–2243.

[35]

Liu, C. H.; Wang, D. D.; Zhang, S. Y.; Cheng, Y. R.; Yang, F.; Xing, Y.; Xu, T. L.; Dong, H. F.; Zhang, X. J. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 2019, 13, 4267–4277.

[36]

Cui, Y. Y.; Chen, X.; Cheng, Y.; Lu, X. Y.; Meng, J. J.; Chen, Z. W.; Li, M. K.; Lin, C. C.; Wang, Y. L.; Yang, J. CuWO4 nanodots for NIR-induced photodynamic and chemodynamic synergistic therapy. ACS Appl. Mater. Interfaces 2021, 13, 22150–22158.

[37]

Chen, M. Y.; Yang, J. X.; Zhou, L. L.; Hu, X. C.; Wang, C. H.; Chai, K. K.; Li, R. H.; Feng, L.; Sun, Y. T.; Dong, C. Y. et al. Dual-responsive and ROS-augmented nanoplatform for chemo/photodynamic/chemodynamic combination therapy of triple negative breast cancer. ACS Appl. Mater. Interfaces 2022, 14, 57–68.

[38]

Yang, H. Y.; Liu, R. F.; Xu, Y. X.; Qian, L. X.; Dai, Z. F. Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett. 2021, 13, 35.

[39]

Wang, L.; Xu, Y. T.; Liu, C.; Si, W. L.; Wang, W. J.; Zhang, Y. W.; Zhong, L. P.; Dong, X. C.; Zhao, Y. X. Copper-doped MOF-based nanocomposite for GSH depleted chemo/photothermal/chemodynamic combination therapy. Chem. Eng. J. 2022, 438, 135567.

[40]

Lv, H. H.; Zhen, C. X.; Liu, J. Y.; Yang, P. F.; Hu, L. J.; Shang, P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid. Med. Cell. Longev. 2019, 2019, 3150145.

[41]

Zhang, A. M.; Zhang, Q.; Alfranca, G.; Pan, S. J.; Huang, Z. C.; Cheng, J.; Ma, Q.; Song, J.; Pan, Y. X.; Ni, J. et al. GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system. Nano Res. 2020, 13, 160–172.

[42]

Maiorino, M.; Conrad, M.; Ursini, F. GPX4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74.

[43]

Proneth, B.; Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019, 26, 14–24.

[44]

Chen, X.; Li, J. B.; Kang, R.; Klionsky, D. J.; Tang, D. L. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081.

[45]

Wang, S. F.; Li, F. Y.; Qiao, R. R.; Hu, X.; Liao, H. W.; Chen, L. M.; Wu, J. H.; Wu, H. B.; Zhao, M.; Liu, J. N. et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano 2018, 12, 12380–12392.

[46]

Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

[47]

Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

[48]

He, H. Z.; Du, L. H.; Guo, H. L.; An, Y. C.; Lu, L. J.; Chen, Y. L.; Wang, Y.; Zhong, H. H.; Shen, J.; Wu, J. et al. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy. Small 2020, 16, 2001251.

[49]

Wu, T. S.; Liang, X.; Liu, X.; Li, Y. M.; Wang, Y. T.; Kong, L.; Tang, M. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part. Fibre Toxicol. 2020, 17, 30.

[50]

Luo, S. W.; Ma, D.; Wei, R. L.; Yao, W.; Pang, X. R.; Wang, Y.; Xu, X. D.; Wei, X. H.; Guo, Y.; Jiang, X. Q. et al. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Acta Biomater. 2022, 138, 518–527.

[51]

Jasim, K. A.; Waheed, I. F.; Topps, M.; Gesquiere, A. J. Multifunctional system for combined chemodynamic-photodynamic therapy employing the endothelin axis based on conjugated polymer nanoparticles. Polym. Chem. 2021, 12, 5449–5466.

[52]

Song, W. L.; Jia, P. F.; Zhang, T.; Dou, K. K.; Liu, L. B.; Ren, Y. P.; Liu, F. J.; Xue, J. M.; Hasanin, M. S.; Qi, H. Z. et al. Cell membrane-camouflaged inorganic nanoparticles for cancer therapy. J. Nanobiotechnol. 2022, 20, 289.

[53]

Fang, H. Y.; Li, M. T.; Liu, Q. Y.; Gai, Y. K.; Yuan, L. J.; Wang, S.; Zhang, X.; Ye, M.; Zhang, Y. X.; Gao, M. Y. et al. Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-Micro Lett. 2020, 12, 62.

[54]

Guller, A. E.; Generalova, A. N.; Petersen, E. V.; Nechaev, A. V.; Trusova, I. A.; Landyshev, N. N.; Nadort, A.; Grebenik, E. A.; Deyev, S. M.; Shekhter, A. B. et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015, 8, 1546–1562.

[55]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[56]

Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

[57]

Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518–1524.

[58]

Wang, N.; Pan, Y.; Lu, T.; Li, X. Z.; Wu, S. K.; Wu, J. L. A new ribbon-ignition method for fabricating p-CuO/n-CeO2 heterojunction with enhanced photocatalytic activity. Appl. Surf. Sci. 2017, 403, 699–706.

[59]

Cheng, G.; Li, W. Q.; Ha, L.; Han, X. H.; Hao, S. J.; Wan, Y.; Wang, Z. G.; Dong, F. P.; Zou, X.; Mao, Y. W. et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 2018, 140, 7282–7291.

[60]

Liu, Y.; Luo, J. S.; Chen, X. J.; Liu, W.; Chen, T. K. Cell membrane coating technology: A promising strategy for biomedical applications. Nano-Micro Lett. 2019, 11, 100.

[61]

Yang, H.; Ding, Y.; Tong, Z. R.; Qian, X. H.; Xu, H.; Lin, F. H.; Sheng, G. P.; Hong, L. J.; Wang, W. L.; Mao, Z. W. pH-responsive hybrid platelet membrane-coated nanobomb with deep tumor penetration ability and enhanced cancer thermal/chemodynamic therapy. Theranostics 2022, 12, 4250–4268.

Nano Research
Pages 5322-5334
Cite this article:
Gao X, Feng J, Lv K, et al. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Research, 2023, 16(4): 5322-5334. https://doi.org/10.1007/s12274-022-5223-4
Topics:

1016

Views

18

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 28 September 2022
Revised: 18 October 2022
Accepted: 19 October 2022
Published: 10 January 2023
© Tsinghua University Press 2022
Return