AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Flagship Review

Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries

Song Chen1Qianwu Chen1Siyu Ding1Yadong Tian1Jun Wang2( )Shaoqi Hou3Jintao Zhang1( )
Key Laboratory for Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061, China
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
Country School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
Show Author Information

Graphical Abstract

Electrocatalysts are vitally important for determining the battery performance, and carbon-based nanomaterials with tunable physicochemical properties hold the promise to realize optimal activities for corresponding redox reactions in rechargeable batteries. This article summarizes the unique features of carbon-based nanomaterials and their recent advances for rechargeable metal batteries, with special focus on the electronic and microstructure modulations.

Abstract

Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices. With the unique features of good electronic conductivity, structure flexibility, and desirable physicochemical property, carbon-based nanomaterials have attracted enormous research attention as efficient electrode materials. Electronic and microstructure engineering of carbon-based nanomaterials are the keys to regulate the electrocatalytic properties for the specific redox reactions of advanced metal-based batteries. However, the critical roles of carbon-based electrocatalysts for rechargeable metal batteries have not been comprehensively discussed. With the basic introduction on the electronic and microstructure engineering strategies, we summarize the recent advances on the rational design of carbon-based electrocatalysts for the important redox reactions in various metal-air batteries and metal-halogen batteries. The relationships between the composition, structure, and the electrocatalytic properties of carbon-based materials were well-addressed to enhance the battery performance. The overview of present challenges and opportunities of the carbon-based active materials for future energy-related applications was also discussed.

References

[1]

Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

[2]

Kammen, D. M.; Sunter, D. A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922–928.

[3]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[4]

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

[5]

Yang, C. Y.; Chen, J.; Ji, X.; Pollard, T. P.; Lü, X. J.; Sun, C. J.; Hou, S.; Liu, Q.; Liu, C. M.; Qing, T. T. et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019, 569, 245–250.

[6]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[7]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[8]

Shinde, S. S.; Jung, J. Y.; Wagh, N. K.; Lee, C. H.; Kim, D. H.; Kim, S. H.; Lee, S. U.; Lee, J. H. Ampere-hour-scale zinc-air pouch cells. Nat. Energy 2021, 6, 592–604.

[9]

Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Soluble and perfluorinated polyelectrolyte for safe and high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202116635.

[10]

He, X.; Ni, Y. X.; Li, Y. X.; Sun, H. X.; Lu, Y.; Li, H. X.; Yan, Z. H.; Zhang, K.; Chen, J. An MXene-based metal anode with stepped sodiophilic gradient structure enables a large current density for rechargeable Na-O2 batteries. Adv. Mater. 2022, 34, 2106565.

[11]

Qin, L.; Schkeryantz, L.; Zheng, J. F.; Xiao, N.; Wu, Y. Y. Superoxide-based K-O2 batteries: Highly reversible oxygen redox solves challenges in air electrodes. J. Am. Chem. Soc. 2020, 142, 11629–11640.

[12]

Li, P.; Li, X.; Guo, Y.; Li, C.; Hou, Y.; Cui, H.; Zhang, R.; Huang, Z.; Zhao, Y.; Li, Q. et al. Highly thermally/electrochemically stable I/I3 bonded organic salts with high I content for long-life Li-I2 batteries. Adv. Energy Mater. 2022, 12, 2103648.

[13]

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

[14]

Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009–4015.

[15]

Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680–2721.

[16]

Chen, K.; Shi, L. R.; Zhang, Y. F.; Liu, Z. F. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036.

[17]

Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. M. Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater. 2019, 31, 1806403.

[18]

Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

[19]

Guo, J. R.; Xu, X. T.; Hill, J. P.; Wang, L. P.; Dang, J. J.; Kang, Y. Q.; Li, Y. L.; Guan, W. S.; Yamauchi, Y. Graphene-carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 2021, 12, 10334–10340.

[20]

Zhao, G. K.; Li, X. M.; Huang, M. R.; Zhen, Z.; Zhong, Y. J.; Chen, Q.; Zhao, X. L.; He, Y. J.; Hu, R. R.; Yang, T. T. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 2017, 46, 4417–4449.

[21]

Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.

[22]

Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

[23]

Sanati, S.; Abazari, R.; Albero, J.; Morsali, A.; García, H.; Liang, Z.; Zou, R. Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 11048–11067.

[24]

Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qiu, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.

[25]

El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.

[26]

Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

[27]

Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

[28]

Zhai, Q. F.; Pan, Y.; Dai, L. M. Carbon-based metal-free electrocatalysts: Past, present, and future. Acc. Mater. Res. 2021, 2, 1239–1250.

[29]

Dong, F.; Wu, M. J.; Zhang, G. X.; Liu, X. H.; Rawach, D.; Tavares, A. C.; Sun, S. H. Defect engineering of carbon-based electrocatalysts for rechargeable zinc-air batteries. Chem. Asian J. 2020, 15, 3737–3751.

[30]

Liu, H. M.; Liu, Q. L.; Wang, Y. R.; Wang, Y. F.; Chou, S. L.; Hu, Z. Z.; Zhang, Z. Q. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin. Chem. Lett. 2022, 33, 683–692.

[31]

Hu, C. G.; Xiao, Y.; Zou, Y. Q.; Dai, L. M. Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 2018, 1, 84–112.

[32]

Qin, Y.; Ou, Z. H.; Xu, C. L.; Zhang, Z. B.; Yi, J. J.; Jiang, Y.; Wu, J. Y.; Guo, C. Z.; Si, Y. J.; Zhao, T. T. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: Recent strategies for design, synthesis and performance optimization. Nanoscale Res. Lett. 2021, 16, 92.

[33]

Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244–7253.

[34]

Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

[35]

Lu, S. S.; Shi, Y. M.; Zhou, W.; Zhang, Z. P.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250–3258.

[36]

Xu, J. H.; Liang, Q. J.; Li, Z. J.; Osipov, V. Y.; Lin, Y. J.; Ge, B. H.; Xu, Q.; Zhu, J. F.; Bi, H. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy. Adv. Mater. 2022, 34, 2200011.

[37]

Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

[38]

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

[39]

Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

[40]

Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 2021, 6, 379–386.

[41]

Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.

[42]

Woo, J.; Lim, J. S.; Kim, J. H.; Joo, S. H. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem. Commun. 2021, 57, 7350–7361.

[43]

Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

[44]

Casanovas, J.; Ricart, J. M.; Rubio, J.; Illas, F.; Jiménez-Mateos, J. M. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 1996, 118, 8071–8076.

[45]

Wang, H. X.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J. C.; Jiang, J. X.; Jia, F. Q. et al. Understanding the roles of nitrogen configurations in hydrogen evolution: Trace atomic cobalt boosts the activity of planar nitrogen-doped graphene. ACS Energy Lett. 2018, 3, 1345–1352.

[46]

Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.

[47]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[48]

Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

[49]

Zhang, J. T.; Dai, L. M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem., Int. Ed. 2016, 55, 13296–13300.

[50]

Xiao, S. L.; Luo, F.; Hu, H.; Yang, Z. H. Boron and nitrogen dual-doped carbon nanospheres for efficient electrochemical reduction of N2 to NH3. Chem. Commun. 2020, 56, 446–449.

[51]

Zhao, S. J.; Wang, J.; Wang, P.; Wang, S.; Li, J. P. One-step synthesis of N, P co-doped porous carbon electrocatalyst for highly efficient nitrogen fixation. Nano Res. 2022, 15, 1779–1785.

[52]

Fu, S. F.; Zhu, C. Z.; Song, J. H.; Engelhard, M. H.; Li, X. L.; Zhang, P. N.; Xia, H. B.; Du, D.; Lin, Y. H. Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Res. 2017, 10, 1888–1895.

[53]

Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

[54]

Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 123, 7270–7273.

[55]

Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505.

[56]

Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

[57]

Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.

[58]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[59]

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

[60]

Qiao, Y.; Liu, Y.; Chen, C.; Xie, H.; Yao, Y.; He, S.; Ping, W.; Liu, B.; Hu, L. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.

[61]

Liu, Z. Y.; Hu, Y. B.; Zheng, W. H.; Wang, C.; Baaziz, W.; Richard, F.; Ersen, O.; Bonn, M.; Wang, H. I.; Narita, A. et al. Untying the bundles of solution-synthesized graphene nanoribbons for highly capacitive micro-supercapacitors. Adv. Funct. Mater. 2022, 32, 2109543.

[62]

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

[63]

Dong, Y.; Zhang, Q. J.; Tian, Z. Q.; Li, B. R.; Yan, W. S.; Wang, S.; Jiang, K. M.; Su, J. W.; Oloman, C. W.; Gyenge, E. L. et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, 2001300.

[64]

Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

[65]

Páez, C. J.; Pereira, A. L. C.; Rodrigues, J. N. B.; Peres, N. M. R. Electronic transport across linear defects in graphene. Phys. Rev. B 2015, 92, 045426.

[66]

Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 2015, 17, 16733–16743.

[67]

Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

[68]

Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.

[69]

Wang, X.; Jia, Y.; Mao, X.; Liu, D. B.; He, W. X.; Li, J.; Liu, J. G.; Yan, X. C.; Chen, J.; Song, L. et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.

[70]

Blackwell, R. E.; Zhao, F. Z.; Brooks, E.; Zhu, J. M.; Piskun, I.; Wang, S. K.; Delgado, A.; Lee, Y. L.; Louie, S. G.; Fischer, F. R. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600, 647–652.

[71]

Su, X. L.; Xue, Z. J.; Li, G.; Yu, P. Edge state engineering of graphene nanoribbons. Nano Lett. 2018, 18, 5744–5751.

[72]

Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

[73]

Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L. P.; Xia, Z. H.; Dai, L. M. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 2013, 3, 1810.

[74]

Jeon, I. Y.; Bae, S. Y.; Seo, J. M.; Baek, J. B. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling. Adv. Funct. Mater. 2015, 25, 6961–6975.

[75]

Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

[76]

Jeon, I. Y.; Choi, M.; Choi, H. J.; Jung, S. M.; Kim, M. J.; Seo, J. M.; Bae, S. Y.; Yoo, S.; Kim, G.; Jeong, H. Y. et al. Antimony-doped graphene nanoplatelets. Nat. Commun. 2015, 6, 7123.

[77]

Wang, H. T.; Wang, Q. X.; Cheng, Y. C.; Li, K.; Yao, Y. B.; Zhang, Q.; Dong, C. Z.; Wang, P.; Schwingenschlögl, U.; Yang, W. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 2012, 12, 141–144.

[78]

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

[79]

Liu, Y.; Cai, J. Y.; Zhou, J. B.; Zang, Y. P.; Zheng, X. S.; Zhu, Z. X.; Liu, B.; Wang, G. M.; Qian, Y. T. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li-O2 batteries. eScience 2022, 2, 389–398.

[80]
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120027.
[81]

Chen, S.; Chen, S.; Zhang, B. H.; Zhang, J. T. Bifunctional oxygen electrocatalysis of N, S-codoped porous carbon with interspersed hollow CoO nanoparticles for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 16720–16728.

[82]

Chen, S.; Shu, X. X.; Wang, H. S.; Zhang, J. T. Thermally driven phase transition of manganese oxide on carbon cloth for enhancing the performance of flexible all-solid-state zinc-air batteries. J. Mater. Chem. A 2019, 7, 19719–19727.

[83]

Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.

[84]

Xue, Y. K.; Li, H. Q.; Ye, X. W. Y.; Yang, S. L.; Zheng, Z. P.; Han, X.; Zhang, X. B.; Chen, L. N.; Xie, Z. X.; Kuang, Q. et al. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Res. 2019, 12, 2490–2497.

[85]

Binninger, T.; Schmidt, T. J.; Kramer, D. Capacitive electronic metal–support interactions: Outer surface charging of supported catalyst particles. Phys. Rev. B 2017, 96, 165405.

[86]

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

[87]

Ye, M. H.; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule 2018, 2, 245–268.

[88]

Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

[89]

Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

[90]

Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

[91]

Cheng, X. L.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. S. Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702184.

[92]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[93]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. M. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[94]

Zhang, F.; Ma, J.; Tan, Y.; Yu, G.; Qin, H. X.; Zheng, L. R.; Liu, H. B.; Li, R. Construction of porphyrin porous organic cage as a support for single cobalt atoms for photocatalytic oxidation in visible light. ACS Catal. 2022, 12, 5827–5833.

[95]
Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120015.
[96]

Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295–303.

[97]

Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.

[98]

Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

[99]

Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

[100]

Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.

[101]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

[102]

Li, T. F.; Deng, H. J.; Liu, J. J.; Jin, C.; Song, Y.; Wang, F. First-row transition metals and nitrogen co-doped carbon nanotubes: The exact origin of the enhanced activity for oxygen reduction reaction. Carbon 2019, 143, 859–868.

[103]

Calle-Vallejo, F.; Martínez, J. I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygenreduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.

[104]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[105]

Fang, X. Z.; Jiao, L.; Yu, S. H.; Jiang, H. L. Metal-organic framework-derived FeCo-N-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. ChemSusChem 2017, 10, 3019–3024.

[106]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[107]

Paul, R.; Du, F.; Dai, L. M.; Ding, Y.; Wang, Z. L.; Wei, F.; Roy, A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 2019, 31, 1805598.

[108]

Zhai, Y. P.; Zhang, B. W.; Shi, R.; Zhang, S. Y.; Liu, Y.; Wang, B. Y.; Zhang, K.; Waterhouse, G. I. N.; Zhang, T. R.; Lu, S. Y. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Adv. Energy Mater. 2022, 12, 2103426.

[109]

Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093.

[110]

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

[111]

Haque, E.; Kim, J.; Malgras, V.; Reddy, K. R.; Ward, A. C.; You, J.; Bando, Y.; Hossain, M. S. A.; Yamauchi, Y. Recent advances in graphene quantum dots: Synthesis, properties, and applications. Small Methods 2018, 2, 1800050.

[112]

Zahir, N.; Magri, P.; Luo, W.; Gaumet, J. J.; Pierrat, P. Recent advances on graphene quantum dots for electrochemical energy storage devices. Energy Environ. Mater. 2022, 5, 201–214.

[113]

Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.

[114]

Zhang, W.; Cai, G. R.; Wu, R.; He, Z.; Yao, H. B.; Jiang, H. L.; Yu, S. H. Templating synthesis of metal-organic framework nanofiber aerogels and their derived hollow porous carbon nanofibers for energy storage and conversion. Small 2021, 17, 2004140.

[115]

He, Q.; Qiao, S. C.; Zhou, Y. Z.; Vajtai, R.; Li, D. P.; Ajayan, P. M.; Ci, L.; Song, L. Carbon nanotubes-based electrocatalysts: Structural regulation, support effect, and synchrotron-based characterization. Adv. Funct. Mater. 2022, 32, 2106684.

[116]

Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

[117]

Wang, S. G.; Cui, Z. T.; Qin, J. W.; Cao, M. H. Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis. Nano Res. 2016, 9, 2270–2283.

[118]

Fang, Y. J.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 20102–20118.

[119]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[120]

Guo, S. J.; Dong, S. J. Graphenenanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

[121]

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

[122]

Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.

[123]

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

[124]

Pang, Y. P.; Su, C.; Jia, G. H.; Xu, L. Q.; Shao, Z. P. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem. Soc. Rev. 2021, 50, 12744–12787.

[125]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Wang, M.; Wang, Y.; Wang, H. F.; Liu, Z.; Xu, Q. One-step synthesis of ultrathin carbon nanoribbons from metal-organic framework nanorods for oxygen reduction and zinc-air batteries. CCS Chem. 2022, 4, 194–204.

[126]

Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

[127]

Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

[128]

Kumar, S.; Saeed, G.; Zhu, L.; Hui, K. N.; Kim, N. H.; Lee, J. H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2021, 403, 126352.

[129]

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

[130]

Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216.

[131]

Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.

[132]

Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.

[133]

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three-dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

[134]

Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

[135]

Li, G. Z.; Huang, B.; Pan, Z. F.; Su, X. Y.; Shao, Z. P.; An, L. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030–2053.

[136]

Jung, J. Y.; Kim, S.; Kim, J. G.; Kim, M. J.; Lee, K. S.; Sung, Y. E.; Kim, P.; Yoo, S. J.; Lim, H. K.; Kim, N. D. Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy 2022, 97, 107206.

[137]

Qi, Y. R.; Li, Q. J.; Wu, Y. K.; Bao, S. J.; Li, C. M.; Chen, Y. M.; Wang, G. X.; Xu, M. W. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 2021, 12, 6347.

[138]

Wang, B.; Yuan, F.; Yu, Q. Y.; Li, W.; Sun, H. L.; Zhang, L. P.; Zhang, D.; Wang, Q. J.; Lai, F. L.; Wang, W. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021, 38, 329–337.

[139]

Geng, D. S.; Ding, N.; Hor, T. S. A.; Chien, S. W.; Liu, Z. L.; Wuu, D.; Sun, X. L.; Zong, Y. From lithium-oxygen to lithium-air batteries: Challenges and opportunities. Adv. Energy Mater. 2016, 6, 1502164.

[140]

Yang, X. Y.; Xu, J. J.; Chang, Z. W.; Bao, D.; Yin, Y. B.; Liu, T.; Yan, J. M.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries. Adv. Energy Mater. 2018, 8, 1702242.

[141]

Guo, Z. Y.; Wang, F. M.; Li, Z. J.; Yang, Y.; Tamirat, A. G.; Qi, H. C.; Han, J. S.; Li, W.; Wang, L.; Feng, S. H. Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li-air batteries. J. Mater. Chem. A 2018, 6, 22096–22105.

[142]

Sun, C. W.; Li, F.; Ma, C.; Wang, Y.; Ren, Y. L.; Yang, W.; Ma, Z. H.; Li, J. Q.; Chen, Y. J.; Kim, Y. et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J. Mater. Chem. A 2014, 2, 7188–7196.

[143]

Liu, W.; Sun, Q.; Yang, Y.; Xie, J. Y.; Fu, Z. W. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem. Commun. 2013, 49, 1951–1953.

[144]

Kwak, W. J.; Chen, Z. H.; Yoon, C. S.; Lee, J. K.; Amine, K.; Sun, Y. K. Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries. Nano Energy 2015, 12, 123–130.

[145]

Cheon, J. Y.; Kim, K.; Sa, Y. J.; Sahgong, S. H.; Hong, Y.; Woo, J.; Yim, S. D.; Jeong, H. Y.; Kim, Y.; Joo, S. H. Graphitic nanoshell/mesoporous carbon nanohybrids as highly efficient and stable bifunctional oxygen electrocatalysts for rechargeable aqueous Na-air batteries. Adv. Energy Mater. 2016, 6, 1501794.

[146]

Wang, J. R.; Lu, H. M.; Hong, Q. S.; Cao, Y.; Li, X. D.; Bai, J. J. Porous N, S-codoped carbon architectures with bimetallic sulphide nanoparticles encapsulated in graphitic layers: Highly active and robust electrocatalysts for the oxygen reduction reaction in Al-air batteries. Chem. Eng. J. 2017, 330, 1342–1350.

[147]

Jiang, M.; Fu, C. P.; Cheng, R. Q.; Liu, T. Y.; Guo, M. L.; Meng, P. Y.; Zhang, J.; Sun, B. D. Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chem. Eng. J. 2021, 404, 127124.

[148]

Cheng, R. Q.; Jiang, M.; Li, K. Q.; Guo, M. L.; Zhang, J.; Ren, J. M.; Meng, P. Y.; Li, R. H.; Fu, C. P. Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries. Chem. Eng. J. 2021, 425, 130603.

[149]

Fu, X. G.; Jiang, G. P.; Wen, G. B.; Gao, R.; Li, S.; Li, M.; Zhu, J. B.; Zheng, Y.; Li, Z. Q.; Hu, Y. F. et al. Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Appl. Catal. B: Environ. 2021, 293, 120176.

[150]

Hang, B. T.; Watanabe, T.; Egashira, M.; Watanabe, I.; Okada, S.; Yamaki, J. I. The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode. J. Power Sources 2006, 155, 461–469.

[151]

Ito, A.; Zhao, L. W.; Okada, S.; Yamaki, J. I. Synthesis of nano-Fe3O4-loaded tubular carbon nanofibers and their application as negative electrodes for Fe/air batteries. J. Power Sources 2011, 196, 8154–8159.

[152]

Tan, W. K.; Asami, K.; Maeda, Y.; Hayashi, K.; Kawamura, G.; Muto, H.; Matsuda, A. Facile formation of Fe3O4-particles decorated carbon paper and its application for all-solid-state rechargeable Fe-air battery. Appl. Surf. Sci. 2019, 486, 257–264.

[153]

Zhang, X. M.; Li, Y.; Jiang, M.; Wei, J. X.; Ding, X. X.; Zhu, C. Y.; He, H.; Lai, H. C.; Shi, J. Y. Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. Chem. Eng. J. 2021, 426, 130758.

[154]

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

[155]

Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 2018, 5, 1700691.

[156]

Zhu, J. W.; Li, W. Q.; Li, S. H.; Zhang, J.; Zhou, H.; Zhang, C. T.; Zhang, J. N.; Mu, S. C. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air battery. Small 2018, 14, 1800563.

[157]

Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

[158]

Qu, S. X.; Song, Z. S.; Liu, J.; Li, Y. B.; Kou, Y.; Ma, C.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. et al. Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy 2017, 39, 101–110.

[159]

Liu, J. N.; Zhao, C. X.; Ren, D.; Wang, J.; Zhang, R.; Wang, S. H.; Zhao, C.; Li, B. Q.; Zhang, Q. Preconstructing asymmetric interface in air cathodes for high-performance rechargeable Zn-air batteries. Adv. Mater. 2022, 34, 2109407.

[160]

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Chen, N.; King, G.; Yu, A. P.; Chen, Z. W. Linker-compensated metal-organic framework with electron delocalized metal sites for bifunctional oxygen electrocatalysis. J. Am. Chem. Soc. 2022, 144, 4783–4791.

[161]

Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Y. Electrochemistry of metal-CO2 batteries: Opportunities and challenges. Energy Storage Mater. 2022, 45, 911–933.

[162]

Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

[163]

Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal-CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

[164]

Xie, J. F.; Zhou, Z.; Wang, Y. B. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 2020, 30, 1908285.

[165]

Ge, B. C.; Wang, Y. Y.; Sun, Y.; Li, Y. P.; Huang, J. Y.; Peng, Q. M. A proof-of-concept of Na-N2 rechargeable battery. Energy Storage Mater. 2019, 23, 733–740.

[166]

Li, Y.; Zhang, Q.; Mei, Z. W.; Li, S. N.; Luo, W. B.; Pan, F.; Liu, H. K.; Dou, S. X. Recent advances and perspective on electrochemical ammonia synthesis under ambient conditions. Small Methods 2021, 5, 2100460.

[167]

Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B: Environ. 2020, 270, 118892.

[168]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[169]

Zhang, Z.; Wu, S. S.; Yang, C.; Zheng, L. Y.; Xu, D. L.; Zha, R. H.; Tang, L.; Cao, K. Z.; Wang, X. G.; Zhou, Z. Li-N2 batteries: A reversible energy storage system? Angew. Chem., Int. Ed. 2019, 58, 17782–17787.

[170]

Yi, J.; Liang, P. C.; Liu, X. Y.; Wu, K.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries. Energy Environ. Sci. 2018, 11, 3075–3095.

[171]

Shu, X. X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. T. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234–243.

[172]

Yang, M. M.; Shu, X. X.; Pan, W.; Zhang, J. T. Toward flexible zinc-air batteries with self-supported air electrodes. Small 2021, 17, 2006773.

[173]

Jiang, H. S.; Luo, R. H.; Li, Y. M.; Chen, W. Recent advances in solid–liquid–gas three-phase interfaces in electrocatalysis for energy conversion and storage. EcoMat 2022, 4, e12199.

[174]

Shu, X. X.; Yang, M. M.; Liu, M. M.; Pan, W.; Zhang, J. T. The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn-air batteries. J. Energy Chem. 2022, 68, 213–221.

[175]

Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536–544.

[176]

Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.

[177]

Zhao, Y.; Liang, J. J.; Wang, C. Y.; Ma, J. M.; Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 2018, 8, 1702524.

[178]

Wu, M. G.; Wang, Y. Q.; Wei, Z. X.; Wang, L.; Zhuo, M.; Zhang, J. T.; Han, X. P.; Ma, J. M. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J. Mater. Chem. A 2018, 6, 10918–10925.

[179]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

[180]

Hu, Q.; Li, G. M.; Li, G. D.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries. Adv. Energy Mater. 2019, 9, 1803867.

[181]

Shu, X. X.; Yang, M. M.; Tan, D. X.; Hui, K. S.; Hui, K. N.; Zhang, J. T. Recent advances in the field of carbon-based cathode electrocatalysts for Zn-air batteries. Mater. Adv. 2021, 2, 96–114.

[182]
Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120026.
[183]

Wang, W. X.; Xiong, F. Y.; Zhu, S. H.; Chen, J. H.; Xie, J.; An, Q. Y. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294.

[184]

Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

[185]

Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.

[186]

Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

[187]

Duan, J. J.; Zheng, Y.; Chen, S.; Tang, Y. H.; Jaroniec, M.; Qiao, S. Z. Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem. Commun. 2013, 49, 7705–7707.

[188]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[189]

Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

[190]

Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

[191]

Lin, Z. Y.; Huang, H.; Cheng, L.; Hu, W.; Xu, P. P.; Yang, Y.; Li, J. M.; Gao, F. Y.; Yang, K.; Liu, S. et al. Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 2021, 33, 2107103.

[192]

Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

[193]

Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.

[194]

Gao, Y.; Kong, D. B.; Cao, F. L.; Teng, S.; Liang, T.; Luo, B.; Wang, B.; Yang, Q. H.; Zhi, L. J. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Res. 2022, 15, 7959–7967.

[195]

Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

[196]

Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

[197]

Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

[198]

Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

[199]

Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries. eScience 2022, 2, 546–556.

[200]

Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.

[201]

Zhao, J. J.; Hu, H. B.; Fang, W. G.; Bai, Z. M.; Zhang, W.; Wu, M. Z. Liquid-metal-bridge-island design: Seamless integration of intrinsically stretchable liquid metal circuits and mechanically deformable structures for ultra-stretchable all-solid-state rechargeable Zn-air battery arrays. J. Mater. Chem. A 2021, 9, 5097–5110.

[202]

Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y.; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 2018, 12, 1949–1958.

[203]

Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

[204]

Fu, J.; Hassan, F. M.; Li, J. D.; Lee, D. U.; Ghannoum, A. R.; Lui, G.; Hoque, M. A.; Chen, Z. W. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv. Mater. 2016, 28, 6421–6428.

[205]

Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

[206]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[207]

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128.

[208]

Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Reaction chemistry in rechargeable Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 2873–2888.

[209]

Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

[210]

Lim, H. D.; Park, K. Y.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.; Kim, Y. H.; Lima, M. D.; Ovalle Robles, R.; Lepró, X. et al. Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv. Mater. 2013, 25, 1348–1352.

[211]

Chen, Y.; Li, F. J.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries. J. Mater. Chem. A 2013, 1, 13076–13081.

[212]

Liu, S. H.; Wang, Z. Y.; Yu, C.; Zhao, Z. B.; Fan, X. M.; Ling, Z.; Qiu, J. S. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li-O2 batteries. J. Mater. Chem. A 2013, 1, 12033–12037.

[213]

Zhang, W. Y.; Zhu, J. X.; Ang, H. X.; Zeng, Y.; Xiao, N.; Gao, Y. B.; Liu, W. L.; Hng, H. H.; Yan, Q. Y. Binder-free graphene foams for O2 electrodes of Li-O2 batteries. Nanoscale 2013, 5, 9651–9658.

[214]

Kim, D. Y.; Kim, M.; Kim, D. W.; Suk, J.; Park, O. O.; Kang, Y. K. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 2015, 93, 625–635.

[215]

Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.

[216]

Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.

[217]

Yu, C.; Zhao, C. T.; Liu, S. H.; Fan, X. M.; Yang, J.; Zhang, M. D.; Qiu, J. S. Polystyrene sphere-mediated ultrathin graphene sheet-assembled frameworks for high-power density Li-O2 batteries. Chem. Commun. 2015, 51, 13233–13236.

[218]

Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011, 11, 5071–5078.

[219]

Etacheri, V.; Sharon, D.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li-O2 batteries. J. Mater. Chem. A 2013, 1, 5021–5030.

[220]

Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

[221]

Meng, W.; Liu, S. W.; Wen, L. N.; Qin, X. Carbon microspheres air electrode for rechargeable Li-O2 batteries. RSC Adv. 2015, 5, 52206–52209.

[222]

Lin, X. J.; Zhou, L.; Huang, T.; Yu, A. S. Hierarchically porous honeycomb-like carbon as a lithium-oxygen electrode. J. Mater. Chem. A 2013, 1, 1239–1245.

[223]

Shui, J. L.; Du, F.; Xue, C. M.; Li, Q.; Dai, L. M. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries. ACS Nano 2014, 8, 3015–3022.

[224]

Shui, J. L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Fan, X. L.; Dai, L. M. Nitrogen-doped holey graphene for high-performance rechargeable Li-O2 batteries. ACS Energy Lett. 2016, 1, 260–265.

[225]

Kim, J. H.; Kannan, A. G.; Woo, H. S.; Jin, D. G.; Kim, W.; Ryu, K.; Kim, D. W. A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 18456–18465.

[226]

Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J.; Zhang, J. G. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487–A492.

[227]

Mirzaeian, M.; Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 2009, 54, 7444–7451.

[228]

Han, J. H.; Guo, X. W.; Ito, Y.; Liu, P.; Hojo, D.; Aida, T.; Hirata, A.; Fujita, T.; Adschiri, T.; Zhou, H. S. et al. Effect of chemical doping on cathodic performance of bicontinuous nanoporous graphene for Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1501870.

[229]

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

[230]

Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H. et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

[231]

Ren, X. D.; Wang, B. Z.; Zhu, J. Z.; Liu, J. J.; Zhang, W. Q.; Wen, Z. Y. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: A first-principles study. Phys. Chem. Chem. Phys. 2015, 17, 14605–14612.

[232]

Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

[233]

Gao, R.; Liang, X.; Yin, P. G.; Wang, J. K.; Lee, Y. L.; Hu, Z. B.; Liu, X. F. An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability. Nano Energy 2017, 41, 535–542.

[234]

Ma, S. C.; Wu, Y.; Wang, J. W.; Zhang, Y. L.; Zhang, Y. T.; Yan, X. X.; Wei, Y.; Liu, P.; Wang, J. P.; Jiang, K. L. et al. Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett. 2015, 15, 8084–8090.

[235]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[236]

Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

[237]

Nazarian-Samani, M.; Lim, H. D.; Haghighat-Shishavan, S.; Kim, H. K.; Ko, Y.; Kim, M. S.; Lee, S. W.; Kashani-Bozorg, S. F.; Abbasi, M.; Guim, H. U. et al. A robust design of Ru quantum dot/N-doped holey graphene for efficient Li-O2 batteries. J. Mater. Chem. A 2017, 5, 619–631.

[238]

Lim, H. D.; Song, H.; Gwon, H.; Park, K. Y.; Kim, J.; Bae, Y.; Kim, H.; Jung, S. K.; Kim, T.; Kim, Y. H. et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ. Sci. 2013, 6, 3570–3575.

[239]

Schroeder, M. A.; Kumar, N.; Pearse, A. J.; Liu, C. Y.; Lee, S. B.; Rubloff, G. W.; Leung, K.; Noked, M. DMSO–Li2O2 interface in the rechargeable Li-O2 battery cathode:Theoretical and experimental perspectives on stability. ACS Appl. Mater. Interfaces 2015, 7, 11402–11411.

[240]

Zhou, W.; Cheng, Y.; Yang, X. F.; Wu, B. S.; Nie, H. J.; Zhang, H. Z.; Zhang, H. M. Iridium incorporated into deoxygenated hierarchical graphene as a high-performance cathode for rechargeable Li-O2 batteries. J. Mater. Chem. A 2015, 3, 14556–14561.

[241]

Shen, J. R.; Wu, H. T.; Sun, W.; Qiao, J. S.; Cai, H. Q.; Wang, Z. H.; Sun, K. N. In-situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries. Chem. Eng. J. 2019, 358, 340–350.

[242]

Balasubramanian, P.; Marinaro, M.; Theil, S.; Wohlfahrt-Mehrens, M.; Jörissen, L. Au-coated carbon electrodes for aprotic Li-O2 batteries with extended cycle life: The key issue of the Li-ion source. J. Power Sources 2015, 278, 156–162.

[243]

Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X. Y.; Wen, J. G.; Miller, D.; Assary, R. S.; Wang, H. H.; Redfern, P. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 2014, 5, 4895.

[244]

Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

[245]

Luo, X. Y.; Ge, L.; Ma, L.; Kropf, A. J.; Wen, J. G.; Zuo, X. B.; Ren, Y.; Wu, T. P.; Lu, J.; Amine, K. Effect of componential proportion in bimetallic electrocatalysts on the aprotic lithium-oxygen battery performance. Adv. Energy Mater. 2018, 8, 1703230.

[246]

Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core–shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

[247]

Hong, M. S.; Choi, H. C.; Byon, H. R. Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery. Chem. Mater. 2015, 27, 2234–2241.

[248]

Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

[249]

Hou, C.; Han, J. H.; Liu, P.; Huang, G.; Chen, M. W. Synergetic effect of liquid and solid catalysts on the energy efficiency of Li-O2 batteries: Cell performances and operando STEM observations. Nano Lett. 2020, 20, 2183–2190.

[250]

Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 2013, 13, 4679–4684.

[251]

Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

[252]

Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519–531.

[253]

Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2014, 2, 6081–6085.

[254]

Zhou, Y.; Lyu, Z.; Wang, L. J.; Dong, W. H.; Dai, W. R.; Cui, X. H.; Hao, Z. K.; Lai, M.; Chen, W. Co3O4 functionalized porous carbon nanotube oxygen-cathodes to promote Li2O2 surface growth for improved cycling stability of Li-O2 batteries. J. Mater. Chem. A 2017, 5, 25501–25508.

[255]

Zhang, Y. M.; Feng, L. X.; Zhan, W. T.; Li, S. J.; Li, Y. L.; Ren, X. Z.; Zhang, P. X.; Sun, L. N. Co3O4 hollow porous nanospheres with oxygen vacancies for enhanced Li-O2 batteries. ACS Appl. Energy Mater. 2020, 3, 4014–4022.

[256]

Liu, G. X.; Zhang, L.; Wang, S. Q.; Ding, L. X.; Wang, H. H. Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li-O2 batteries. J. Mater. Chem. A 2017, 5, 14530–14536.

[257]

Cao, L. J.; Lv, F. C.; Liu, Y.; Wang, W. X.; Huo, Y. F.; Fu, X. Z.; Sun, R.; Lu, Z. G. A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. Chem. Commun. 2015, 51, 4364–4367.

[258]

Gong, Y. D.; Ding, W.; Li, Z. P.; Su, R.; Zhang, X. L.; Wang, J.; Zhou, J. G.; Wang, Z. W.; Gao, Y. H.; Li, S. Q. et al. An inverse spinel cobalt-iron oxide and N-doped graphene composite as an efficient and durable bifuctional catalyst for Li-O2 batteries. ACS Catal. 2018, 8, 4082–4090.

[259]

Lu, M. H.; Xu, C. H.; Zhan, Y.; Jim Yang Lee, J. Y. Improving the performance of perovskite in nonaqueous oxygen electrocatalysis. Chem. Asian J. 2016, 11, 1210–1217.

[260]

Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765–9768.

[261]

Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

[262]

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui, Y.; Dai, H. J. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 2012, 5, 7931–7935.

[263]

Kwak, W. J.; Lau, K. C.; Shin, C. D.; Amine, K.; Curtiss, L. A.; Sun, Y. K. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 2015, 9, 4129–4137.

[264]

Zhu, Q. C.; Xu, S. M.; Harris, M. M.; Ma, C.; Liu, Y. S.; Wei, X.; Xu, H. S.; Zhou, Y. X.; Cao, Y. C.; Wang, K. X. et al. A composite of carbon-wrapped Mo2C nanoparticle and carbon nanotube formed directly on Ni foam as a high-performance binder-free cathode for Li-O2 batteries. Adv. Funct. Mater. 2016, 26, 8514–8520.

[265]

Li, J. X.; Zou, M. Z.; Chen, L. Z.; Huang, Z. G.; Guan, L. H. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries. J. Mater. Chem. A 2014, 2, 10634–10638.

[266]

Li, F. J.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. S. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries. Chem. Commun. 2013, 49, 1175–1177.

[267]

Dong, S. M.; Chen, X.; Zhang, K. J.; Gu, L.; Zhang, L. X.; Zhou, X. H.; Li, L. F.; Liu, Z. H.; Han, P. X.; Xu, H. X. et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Chem. Commun. 2011, 47, 11291–11293.

[268]

Wang, P.; Zhao, D. Y.; Hui, X. B.; Qian, Z.; Zhang, P.; Ren, Y. Y.; Lin, Y.; Zhang, Z. W.; Yin, L. W. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries. Adv. Energy Mater. 2021, 11, 2003069.

[269]

Park, J.; Jun, Y. S.; Lee, W. R.; Gerbec, J. A.; See, K. A.; Stucky, G. D. Bimodal mesoporous titanium nitride/carbon microfibers as efficient and stable electrocatalysts for Li-O2 batteries. Chem. Mater. 2013, 25, 3779–3781.

[270]

Cao, X. Y.; Wulan, B.; Zhang, B. H.; Tan, D. X.; Zhang, J. T. Defect evolution of hierarchical SnO2 aggregates for boosting CO2 electrocatalytic reduction. J. Mater. Chem. A 2021, 9, 14741–14751.

[271]

Tan, D. X.; Wulan, B.; Cao, X. Y.; Zhang, J. T. Strong interactions of metal–support for efficient reduction of carbon dioxide into ethylene. Nano Energy 2021, 89, 106460.

[272]

Tan, D. X.; Wulan, B.; Ma, J. Z.; Cao, X. Y.; Zhang, J. T. Interface molecular functionalization of Cu2O for synchronous electrocatalytic generation of formate. Nano Lett. 2022, 22, 6298–6305.

[273]

Wulan, B.; Cao, X. Y.; Tan, D. X.; Shu, X. X.; Zhang, J. T. Atomic bridging of metal–nitrogen–carbon toward efficient integrated electrocatalysis. Adv. Funct. Mater. 2022, 32, 2203842.

[274]

Wulan, B.; Zhao, L. L.; Tan, D. X.; Cao, X. Y.; Ma, J. Z.; Zhang, J. T. Electrochemically driven interfacial transformation for high-performing solar-to-fuel electrocatalytic conversion. Adv. Energy Mater. 2022, 12, 2103960.

[275]

Zhang, B. H.; Chen, S.; Wulan, B.; Zhang, J. T. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.

[276]

Hu, Z.; Xie, Y. Y.; Yu, D. S.; Liu, Q. N.; Zhou, L. M.; Zhang, K.; Li, P.; Hu, F.; Li, L. L.; Chou, S. L. et al. Hierarchical Ti3C2Tx MXene/carbon nanotubes for low overpotential and long-life Li-CO2 batteries. ACS Nano 2021, 15, 8407–8417.

[277]

Xu, S. M.; Das, S. K.; Archer, L. A. The Li-CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656–6660.

[278]

Xiao, Y.; Du, F.; Hu, C. G.; Ding, Y.; Wang, Z. L.; Roy, A.; Dai, L. M. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett. 2020, 5, 916–921.

[279]

Zhang, Z.; Zhang, Q.; Chen, Y. N.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem., Int. Ed. 2015, 54, 6550–6553.

[280]

Ye, F. H.; Gong, L. L.; Long, Y. D.; Talapaneni, S. N.; Zhang, L. P.; Xiao, Y.; Liu, D.; Hu, C. G.; Dai, L. M. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries. Adv. Energy Mater. 2021, 11, 2101390.

[281]

Xing, Y.; Yang, Y.; Li, D. H.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Yang, D. J.; Wu, F. et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries. Adv. Mater. 2018, 30, 1803124.

[282]

Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 2018, 5, 1700567.

[283]

Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Z. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene. J. Mater. Chem. A 2018, 6, 3218–3223.

[284]

Zhang, Z.; Yang, C.; Wu, S. S.; Wang, A. N.; Zhao, L. L.; Zhai, D. D.; Ren, B.; Cao, K. Z.; Zhou, Z. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries. Adv. Energy Mater. 2019, 9, 1802805.

[285]

Liu, L. M.; Qin, Y. Y.; Wang, K.; Mao, H.; Wu, H.; Yu, W.; Zhang, D. Y.; Zhao, H. Y.; Wang, H. R.; Wang, J. H. et al. Rational design of nanostructured metal/C interface in 3D self-supporting cellulose carbon aerogel facilitating high-performance Li-CO2 batteries. Adv. Energy Mater. 2022, 12, 2103681.

[286]

Lin, J. F.; Ding, J. N.; Wang, H. Z.; Yang, X. Y.; Zheng, X. R.; Huang, Z. C.; Song, W. Q.; Ding, J.; Han, X. P.; Hu, W. B. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode. Adv. Mater. 2022, 34, 2200559.

[287]

Xu, S. M.; Chen, C. J.; Kuang, Y. D.; Song, J. W.; Gan, W. T.; Liu, B. Y.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. B. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 2018, 11, 3231–3237.

[288]

Wang, C. Y.; Zhang, Q. M.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small 2018, 14, 1800641.

[289]

Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. High performance Li-CO2 batteries with NiO-CNT cathodes. J. Mater. Chem. A 2018, 6, 2792–2796.

[290]

Liu, Q. N.; Hu, Z.; Li, L.; Li, W. J.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L. Facile synthesis of birnessite δ-MnO2 and carbon nanotube composites as effective catalysts for Li-CO2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 16585–16593.

[291]

Li, S.; Liu, Y.; Zhou, J.; Hong, S.; Dong, Y.; Wang, J.; Gao, X.; Qi, P.; Han, Y.; Wang, B. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries. Energy Environ. Sci. 2019, 12, 1046–1054.

[292]

Guo, Z. Y.; Li, J. L.; Qi, H. C.; Sun, X. M.; Li, H. D.; Tamirat, A. G.; Liu, J.; Wang, Y. G.; Wang, L. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode. Small 2019, 15, 1803246.

[293]

Wu, M.; Kim, J. Y.; Park, H.; Kim, D. Y.; Cho, K. M.; Lim, E.; Chae, O. B.; Choi, S.; Kang, Y. K.; Kim, J. et al. Understanding reaction pathways in high dielectric electrolytes using β-Mo2C as a catalyst for Li-CO2 batteries. ACS Appl. Mater. Interfaces 2020, 12, 32633–32641.

[294]

Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

[295]

Yang, Y. J.; Zhang, N. B.; Zou, Z. L.; Yi, X. H.; Liu, J. Q. Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery. Chem. Eng. J. 2022, 435, 135148.

[296]

Liu, Y. K.; Li, J.; Shen, Q. Y.; Zhang, J.; He, P. G.; Qu, X. H.; Liu, Y. C. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience 2022, 2, 10–31.

[297]

Lin, X. T.; Sun, Q.; Doyle Davis, K.; Li, R. Y.; Sun, X. L. The application of carbon materials in nonaqueous Na-O2 batteries. Carbon Energy 2019, 1, 141–164.

[298]

Sun, Q.; Yadegari, H.; Banis, M. N.; Liu, J.; Xiao, B. W.; Wang, B. Q.; Lawes, S.; Li, X.; Li, R. Y.; Sun, X. L. Self-stacked nitrogen-doped carbon nanotubes as long-life air electrode for sodium-air batteries: Elucidating the evolution of discharge product morphology. Nano Energy 2015, 12, 698–708.

[299]

Jian, Z. L.; Chen, Y.; Li, F. J.; Zhang, T.; Liu, C.; Zhou, H. S. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode. J. Power Sources 2014, 251, 466–469.

[300]

Sun, Q.; Liu, J.; Xiao, B. W.; Wang, B. Q.; Banis, M.; Yadegari, H.; Adair, K. R.; Li, R. Y.; Sun, X. L. Visualizing the oxidation mechanism and morphological evolution of the cubic-shaped superoxide discharge product in Na-air batteries. Adv. Funct. Mater. 2019, 29, 1808332.

[301]

Enterría, M.; Gómez-Urbano, J. L.; Munuera, J. M.; Villar-Rodil, S.; Carriazo, D.; Paredes, J. I.; Ortiz-Vitoriano, N. Boosting the performance of graphene cathodes in Na-O2 batteries by exploiting the multifunctional character of small biomolecules. Small 2021, 17, 2005034.

[302]

Li, Y. L.; Yadegari, H.; Li, X. F.; Banis, M. N.; Li, R. Y.; Sun, X. L. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. Chem. Commun. 2013, 49, 11731–11733.

[303]

Zheng, Z.; Jiang, J. C.; Guo, H. P.; Li, C.; Konstantinov, K.; Gu, Q. F.; Wang, J. Z. Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na-O2 batteries. Nano Energy 2021, 81, 105529.

[304]

Xia, C.; Black, R.; Fernandes, R.; Adams, B.; Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 2015, 7, 496–501.

[305]

Yadegari, H.; Li, Y. L.; Banis, M. N.; Li, X. F.; Wang, B. Q.; Sun, Q.; Li, R. Y.; Sham, T. K.; Cui, X. Y.; Sun, X. L. On rechargeability and reaction kinetics of sodium-air batteries. Energy Environ. Sci. 2014, 7, 3747–3757.

[306]

Hu, X. F.; Li, Z. F.; Zhao, Y. R.; Sun, J. C.; Zhao, Q.; Wang, J. B.; Tao, Z. L.; Chen, J. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 2017, 3, e1602396.

[307]

Shu, C. Z.; Lin, Y. M.; Zhang, B. S.; Abd Hamid, S. B.; Su, D. S. Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium-oxygen batteries. J. Mater. Chem. A 2016, 4, 6610–6619.

[308]

Sun, B.; Kretschmer, K.; Xie, X. Q.; Munroe, P.; Peng, Z. Q.; Wang, G. X. Hierarchical porous carbon spheres for high-performance Na-O2 batteries. Adv. Mater. 2017, 29, 1606816.

[309]

Enterría, M.; Botas, C.; Gómez-Urbano, J. L.; Acebedo, B.; López del Amo, J. M.; Carriazo, D.; Rojo, T.; Ortiz-Vitoriano, N. Pathways towards high performance Na-O2 batteries: Tailoring graphene aerogel cathode porosity & nanostructure. J. Mater. Chem. A 2018, 6, 20778–20787.

[310]

Díaz-Duran, A. K.; Roncaroli, F. MOF derived mesoporous nitrogen doped carbons with high activity towards oxygen reduction. Electrochim. Acta 2017, 251, 638–650.

[311]

Kang, J. H.; Kwak, W. J.; Aurbach, D.; Sun, Y. K. Sodium oxygen batteries: One step further with catalysis by ruthenium nanoparticles. J. Mater. Chem. A 2017, 5, 20678–20686.

[312]

Zhang, S. P.; Wen, Z. Y.; Rui, K.; Shen, C.; Lu, Y.; Yang, J. H. Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium-oxygen batteries. J. Mater. Chem. A 2015, 3, 2568–2571.

[313]

Ma, J. L.; Meng, F. L.; Xu, D.; Zhang, X. B. Co-embedded N-doped carbon fibers as highly efficient and binder-free cathode for Na-O2 batteries. Energy Storage Mater. 2017, 6, 1–8.

[314]

Wu, F.; Xing, Y.; Lai, J. N.; Zhang, X. X.; Ye, Y. S.; Qian, J.; Li, L.; Chen, R. J. Micrometer-sized RuO2 catalysts contributing to formation of amorphous Na-deficient sodium peroxide in Na-O2 batteries. Adv. Funct. Mater. 2017, 27, 1700632.

[315]

Liu, Y. Z.; Chi, X. W.; Han, Q.; Du, Y. X.; Yang, J. H.; Liu, Y. Vertically self-standing C@NiCo2O4 nanoneedle arrays as effective binder-free cathodes for rechargeable Na-O2 batteries. J. Alloys Compd. 2019, 772, 693–702.

[316]

Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482–6486.

[317]

Fang, C.; Luo, J. M.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J. et al. Enhancing catalyzed decomposition of Na2CO3 with Co2MnOx nanowire-decorated carbon fibers for advanced Na-CO2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 17240–17248.

[318]

Xiao, N.; Rooney, R. T.; Gewirth, A. A.; Wu, Y. Y. The long-term stability of KO2 in K-O2 batteries. Angew. Chem., Int. Ed. 2018, 57, 1227–1231.

[319]

Liu, S.; Yang, H. B.; Huang, X.; Liu, L. H.; Cai, W. Z.; Gao, J. J.; Li, X. N.; Zhang, T.; Huang, Y. Q.; Liu, B. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 2018, 28, 1800499.

[320]

Wu, Z. Z.; Xu, J. T.; Zhang, Q.; Wang, H. B.; Ye, S. H.; Wang, Y. L.; Lai, C. LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties. Energy Storage Mater. 2018, 10, 62–68.

[321]

Li, K.; Chen, S.; Chen, S.; Liu, X. E.; Pan, W.; Zhang, J. T. Nitrogen, phosphorus co-doped carbon cloth as self-standing electrode for lithium-iodine batteries. Nano Res. 2019, 12, 549–555.

[322]
Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120025.
[323]

Chen, S.; Zhang, J. T. Redox reactions of halogens for reversible electrochemical energy storage. Dalton Trans. 2020, 49, 9929–9934.

[324]

Zhao, Y.; Wang, L.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.

[325]

Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982–5987.

[326]

Su, Z.; Wei, Z. X.; Lai, C.; Deng, H. Q.; Liu, Z. X.; Ma, J. M. Robust pseudo-capacitive Li-I2 battery enabled by catalytic, adsorptive N-doped graphene interlayer. Energy Storage Mater. 2018, 14, 129–135.

[327]

Sun, B.; Wang, P.; Xu, J.; Jin, Q.; Zhang, Z.; Wu, H.; Jin, Y. A garnet-electrolyte based molten Li-I2 battery with high performance. Nano Res. 2021, 15, 4076–4082.

[328]

Chen, Q. W.; Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, H. S.; Zhang, J. T. Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery. Chem. Eng. J. 2022, 431, 133961.

[329]

Wang, Y. L.; Sun, Q. L.; Zhao, Q. Q.; Cao, J. S.; Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 2011, 4, 3947–3950.

[330]

Zhang, Q.; Wu, Z. Z.; Liu, F.; Liu, S.; Liu, J.; Wang, Y. L.; Yan, T. Y. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium-iodine batteries. J. Mater. Chem. A 2017, 5, 15235–15242.

[331]

Li, K. D.; Lin, B.; Li, Q. F.; Wang, H. F.; Zhang, S.; Deng, C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries. ACS Appl. Mater. Interfaces 2017, 9, 20508–20518.

[332]

Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.

[333]

Li, K.; Hu, Z. Y.; Ma, J. Z.; Chen, S.; Mu, D. X.; Zhang, J. T. A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv. Mater. 2019, 31, 1902399.

[334]

Tang, X.; Zhou, D.; Li, P.; Guo, X.; Wang, C. Y.; Kang, F. Y.; Li, B. H.; Wang, G. X. High-performance quasi-solid-state MXene-based Li-I batteries. ACS Cent. Sci. 2019, 5, 365–373.

[335]

Su, Z.; Tong, C. J.; He, D. Q.; Lai, C.; Liu, L. M.; Wang, C.; Xi, K. Ultra-small B2O3 nanocrystals grown in situ on highly porous carbon microtubes for lithium-iodine and lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 8541–8547.

[336]

Wang, Y. L.; Wang, X.; Tian, L. Y.; Sun, Y. Y.; Ye, S. H. Fixing of highly soluble Br2/Br in porous carbon as a cathode material for rechargeable lithium ion batteries. J. Mater. Chem. A 2015, 3, 1879–1883.

[337]

Barpanda, P.; Fanchini, G.; Amatucci, G. G. Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon 2011, 49, 2538–2548.

[338]

Peterson, B. B.; Andrews, E. M.; Hung, F.; Flake, J. C. Carbonized metal-organic framework cathodes for secondary lithium-bromine batteries. J. Power Sources 2021, 492, 229658.

[339]

Xi, X. L.; Li, X. F.; Wang, C. H.; Lai, Q. Z.; Cheng, Y. H.; Xu, P. C.; Zhang, H. M. Non-aqueous lithium bromine battery of high energy density with carbon coated membrane. J. Energy Chem. 2017, 26, 639–646.

[340]

Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T.; Sprenkle, V. et al. Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett. 2017, 2, 2674–2680.

[341]

Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548–3554.

[342]

Biswas, S.; Senju, A.; Mohr, R.; Hodson, T.; Karthikeyan, N.; Knehr, K. W.; Hsieh, A. G.; Yang, X. F.; Koel, B. E.; Steingart, D. A. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 2017, 10, 114–120.

[343]

Chen, S.; Chen, Q. W.; Ma, J. Z.; Wang, J. J.; Hui, K. S.; Zhang, J. T. Interface coordination stabilizing reversible redox of zinc for high-performance zinc-iodine batteries. Small 2022, 18, 2200168.

[344]

He, Y. L.; Liu, M. M.; Chen, S.; Zhang, J. T. Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries. Sci. China Chem. 2022, 65, 391–398.

[345]

Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H. Y.; Zhang, J. T. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761.

[346]

Xu, J. W.; Wang, J. G.; Ge, L. H.; Sun, J. R.; Ma, W. Q.; Ren, M. M.; Cai, X. X.; Liu, W. L.; Yao, J. S. ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 2022, 610, 98–105.

[347]

Xu, Y.; Xie, C. X.; Li, T. Y.; Li, X. F. A high energy density bromine-based flow battery with two-electron transfer. ACS Energy Lett. 2022, 7, 1034–1039.

[348]

Gong, D. C.; Wang, B.; Zhu, J. Y.; Podila, R.; Rao, A. M.; Yu, X. Z.; Xu, Z.; Lu, B. G. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 2017, 7, 1601885.

[349]

Lee, J. H.; Byun, Y.; Jeong, G. H.; Choi, C.; Kwen, J.; Kim, R.; Kim, I. H.; Kim, S. O.; Kim, H. T. High-energy efficiency membraneless flowless Zn-Br battery: Utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 2019, 31, 1904524.

[350]

Wang, F. X.; Yang, H. L.; Zhang, J.; Zhang, P. P.; Wang, G.; Zhuang, X. D.; Cuniberti, G.; Feng, X. L. A dual-stimuli-responsive sodium-bromine battery with ultrahigh energy density. Adv. Mater. 2018, 30, 1800028.

[351]

Zhang, G. M.; Wang, H. F.; Zhang, S.; Deng, C. Using core–shell interlinked polymer@C-iodine hollow spheres to synergistically depress polyiodide shuttle and boost kinetics for iodine-based batteries. J. Mater. Chem. A 2018, 6, 9019–9031.

[352]

Hu, Y. X.; Sun, D.; Luo, B.; Wang, L. Z. Recent progress and future trends of aluminum batteries. Energy Technol. 2019, 7, 86–106.

[353]

Jiang, M.; Fu, C. P.; Meng, P. Y.; Ren, J. M.; Wang, J.; Bu, J. F.; Dong, A. P.; Zhang, J.; Xiao, W.; Sun, B. D. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 2022, 34, 2102026.

[354]

Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

[355]

Zhang, S. L.; Tan, X. J.; Meng, Z.; Tian, H. J.; Xu, F. F.; Han, W. Q. Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J. Mater. Chem. A 2018, 6, 9984–9996.

[356]

Yang, S.; Li, C.; Lv, H. M.; Guo, X.; Wang, Y. B.; Han, C. P.; Zhi, C. Y.; Li, H. F. High-rate aqueous aluminum-ion batteries enabled by confined iodine conversion chemistry. Small Methods 2021, 5, 2100611.

Nano Research
Pages 4246-4276
Cite this article:
Chen S, Chen Q, Ding S, et al. Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16(4): 4246-4276. https://doi.org/10.1007/s12274-022-5247-9
Topics:

3158

Views

10

Crossref

12

Web of Science

8

Scopus

2

CSCD

Altmetrics

Received: 15 September 2022
Revised: 21 October 2022
Accepted: 26 October 2022
Published: 15 December 2022
© Tsinghua University Press 2022
Return