Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices. With the unique features of good electronic conductivity, structure flexibility, and desirable physicochemical property, carbon-based nanomaterials have attracted enormous research attention as efficient electrode materials. Electronic and microstructure engineering of carbon-based nanomaterials are the keys to regulate the electrocatalytic properties for the specific redox reactions of advanced metal-based batteries. However, the critical roles of carbon-based electrocatalysts for rechargeable metal batteries have not been comprehensively discussed. With the basic introduction on the electronic and microstructure engineering strategies, we summarize the recent advances on the rational design of carbon-based electrocatalysts for the important redox reactions in various metal-air batteries and metal-halogen batteries. The relationships between the composition, structure, and the electrocatalytic properties of carbon-based materials were well-addressed to enhance the battery performance. The overview of present challenges and opportunities of the carbon-based active materials for future energy-related applications was also discussed.
Publications
- Article type
- Year
- Co-author
Article type
Year
Flagship Review
Issue
Nano Research 2023, 16(4): 4246-4276
Published: 15 December 2022
Downloads:125
Total 1