Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carbon-based dual-metal sites catalysts (DMSCs) have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments, electronic structure, and the maximized atom utilization. The reasonable utilization of carbon-based DMSCs provides new possibilities to achieve the outstanding catalytic performance, remarkable selectivity, and recyclability in energy-related catalysis. Based on this, this review intends to summarize the recent breakthroughs in carbon-based DMSCs for the energy catalysis. Firstly, the definition and classifications of DMSCs are proposed, mainly dividing into three types (isolated dual-metal site pairs, binuclear homologous dual-metal sites pairs, and binuclear heterologous dual-metal sites pairs). Subsequently, we discuss the potential of DMSCs targeting on energy conversion reactions, such as electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), CO2 reduction reaction (CO2RR), and N2 reduction reaction (NRR). Finally, we predict the remaining challenges and possible opportunities on the unique carbon-based DMSCs for energy applications in the future.
Chu, S.; Majumdar. A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Chu, S.; Cui, Y.; Liu. N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.
Larcher, D.; Tarascon. J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.
Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer. K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.
Peng, Y.; Lu, B. Z.; Chen. S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.
Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic. N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.
Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.
Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.
Xiao, L. Y.; Wang, Z. L.; Guan. J. Q. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472, 214777.
Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang. T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun. X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.
Hunter, B. M.; Gray, H. B.; Müller. A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.
Gewirth, A. A.; Varnell, J. A.; DiAscro. A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313–2339.
Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes. E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 52, 237–247.
Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin. Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.
Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin. Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.
Liu, D. B.; He, Q.; Ding, S. Q.; Song. L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 2020, 10, 2001482.
Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li. Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.
Liu, L. C.; Corma. A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
Jiao, L.; Jiang. H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li. Y. D. Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.
Jeong, H.; Kwon, O.; Kim, B. S.; Bae, J.; Shin, S.; Kim, H. E.; Kim, J.; Lee. H. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375.
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li. Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.
Wang, A. Q.; Li, J.; Zhang. T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Zhang, H. B.; Liu, G. G.; Shi, L.; Ye. J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.
Beniya, A.; Higashi. S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2019, 2, 590–602.
Wan, C. Z.; Duan, X. F.; Huang. Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.
Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang. T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.
Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie. Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.
Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.
Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.
Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.
Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.
Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang. J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.
Yin, H. B.; Yuan, P. F.; Lu, B. A.; Xia, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge—Type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.
Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.
Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.
Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G. T.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.
Li, Y. G.; Wu, Z. S.; Lu, P. F.; Wang, X.; Liu, W.; Liu, Z. B.; Ma, J. Y.; Ren, W. C.; Jiang, Z.; Bao. X. H. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 2020, 7, 1903089.
Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan. J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.
Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang. G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.
Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.
Zhao, Y. Q.; Ling, T.; Chen, S. M.; Jin, B.; Vasileff, A.; Jiao, Y.; Song, L.; Luo, J.; Qiao. S. Z. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 12252–12257.
He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song. L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.
Fang, S.; Zhu, X. R.; Liu, X. K.; Gu, J.; Liu, W.; Wang, D. H.; Zhang, W. H.; Lin, Y.; Lu, J. L.; Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.
Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.
Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang. H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.
Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu. W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 5, 12303–12307.
Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.
Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li. Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.
Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller. M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018, 1, 385–397.
Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang. T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.
DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters. and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.
Zhang, Q. Q.; Guan. J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.
Matthews, T.; Mashola, T. A.; Adegoke, K. A.; Mugadza, K.; Fakude, C. T.; Adegoke, O. R.; Adekunle, A. S.; Ndungu, P.; Maxakato, N. W. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification. and energy conversion applications. Coord. Chem. Rev. 2022, 467, 214600.
Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu. G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.
Lu, B. Z.; Liu, Q. M.; Chen. S. W. Electrocatalysis of single-atom sites: Impacts of atomic coordination. ACS Catal. 2020, 10, 7584–7618.
Tang, T. M.; Wang, Z. L.; Guan. J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504.
Hou, C. C.; Wang, H. F.; Li, C. X.; Xu. Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.
Zhao, Y. Y.; Yang, K. R.; Wang, Z. C.; Yan, X. X.; Cao, S. F.; Ye, Y. F.; Dong, Q.; Zhang, X. Z.; Thorne, J. E.; Jin, L. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. USA 2018, 115, 2902–2907.
Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z. T.; Lao, Z. H.; Chen, Y. W.; Wang, M. L.; Zheng, X. S.; Zhu, J. F.; Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.
Lin, L.; Liu, T. F.; Xiao, J. P.; Li, H. F.; Wei, P. F.; Gao, D. F.; Nan, B.; Si, R.; Wang, G. X.; Bao. X. H. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem., Int. Ed. 2020, 59, 22408–22413.
Li, R. Z.; Wang. D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.
Zhang, H. W.; Jin, X. D.; Lee, J. M.; Wang. X. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano 2022, 16, 17572–17592.
Hu, Y. F.; Li, Z. S.; Li, B. L.; Yu. C. L. Recent progress of diatomic catalysts: General design fundamentals and diversified catalytic applications. Small 2022, 18, 2203589.
Shan, J. Q.; Ye, C.; Jiang, Y. N.; Jaroniec, M.; Zheng, Y.; Qiao. S. Z. Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 2022, 8, eabo0762.
Chen, Z. W.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities. and challenges. J. Mater. Chem. A 2019, 7, 3492–3515.
Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang. H. T. “More is different: “Synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.
Cao, K. C.; Skowron, S. T.; Biskupek, J.; Stoppiello, C. T.; Leist, C.; Besley, E.; Khlobystov, A. N.; Kaiser. U. Imaging an unsupported metal–metal bond in dirhenium molecules at the atomic scale. Sci. Adv. 2020, 6, eaay5849.
Peng, L. S.; Shang, L.; Zhang, T. R.; Waterhouse. G. I. N. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv. Energy Mater. 2020, 10, 2003018.
Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang. N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 2022, 308, 121206.
Li, W. H.; Yang, J. R.; Wang. D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. 2022, 134, e202213318.
Guan, E. J.; Gates. B. C. Stable rhodium pair sites on MgO: Influence of ligands and rhodium nuclearity on catalysis of ethylene hydrogenation and H–D exchange in the reaction of H2 with D2. ACS Catal. 2018, 8, 482–487.
Guan, E. J.; Debefve, L.; Vasiliu, M.; Zhang, S. J.; Dixon, D. A.; Gates. B. C. MgO-supported iridium metal pair-site catalysts are more active and resistant to CO poisoning than analogous single-site catalysts for ethylene hydrogenation and hydrogen-deuterium exchange. ACS Catal. 2019, 9, 9545–9553.
Shi, Q. R.; He, Y. H.; Bai, X. W.; Wang, M. Y.; Cullen, D. A.; Lucero, M.; Zhao, X. H.; More, K. L.; Zhou, H.; Feng, Z. X. et al. Methanol tolerance of atomically dispersed single metal site catalysts: Mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ. Sci. 2020, 13, 3544–3555.
Cammarota, R. C.; Vollmer, M. V.; Xie, J.; Ye, J. Y.; Linehan, J. C.; Burgess, S. A.; Appel, A. M.; Gagliardi, L.; Lu. C. C. A bimetallic nickel-gallium complex catalyzes CO2 hydrogenation via the intermediacy of an anionic d10 nickel hydride. J. Am. Chem. Soc. 2017, 139, 14244–14250.
Dinh, K. T.; Sullivan, M. M.; Narsimhan, K.; Serna, P.; Meyer, R. J.; Dincă, M.; Román-Leshkov. Y. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 2019, 141, 11641–11650.
Schöttle, C.; Guan, E. J.; Okrut, A.; Grosso-Giordano, N. A.; Palermo, A.; Solovyov, A.; Gates, B. C.; Katz. A. Bulky calixarene ligands stabilize supported iridium pair-site catalysts. J. Am. Chem. Soc. 2019, 141, 4010–4015.
Yardimci, D.; Serna, P.; Gates, B. C. Tuning catalytic selectivity: Zeolite- and magnesium oxide-supported molecular rhodium catalysts for hydrogenation of 1. 3-butadiene. ACS Catal. 2012, 2, 2100–2113.
Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.
Gawande, M. B.; Branco, P. S.; Varma. R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393.
Yu, W. T.; Porosoff, M. D.; Chen. J. G. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.
Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray. C. B. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 2013, 341, 771–773.
Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt. R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 2005, 127, 1394–1395.
Yang, D.; Xu, P. H.; Guan, E. J.; Browning, N. D.; Gates, B. C. Rhodium pair-sites on magnesium oxide: Synthesis, characterization. and catalysis of ethylene hydrogenation. J. Catal. 2016, 338, 12–20.
Desai, S. P.; Ye, J. Y.; Zheng, J.; Ferrandon, M. S.; Webber, T. E.; Platero-Prats, A. E.; Duan, J. X.; Garcia-Holley, P.; Camaioni, D. M.; Chapman, K. W. et al. Well-defined rhodium-gallium catalytic sites in a metal-organic framework: Promoter-controlled selectivity in alkyne semihydrogenation to E-alkenes. J. Am. Chem. Soc. 2018, 140, 15309–15318.
Tian, S. B.; Fu, Q.; Chen, W. X.; Feng, Q. C.; Chen, Z.; Zhang, J.; Cheong, W. C.; Yu, R.; Gu, L.; Dong, J. C. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.
Zhao, Y. Y.; Yan, X. X.; Yang, K. R.; Cao, S. F.; Dong, Q.; Thorne, J. E.; Materna, K. L.; Zhu, S. S.; Pan, X. Q.; Flytzani-Stephanopoulos, M. et al. End-on bound iridium dinuclear heterogeneous catalysts on WO3 for solar water oxidation. ACS Cent. Sci. 2018, 4, 1166–1172.
Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.
Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 2019, 240, 112–121.
Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.
Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu. W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li. Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.
Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. G.; Li. Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.
Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster. and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.
Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.
Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y. T.; Cullen, D. A.; Zheng, D. X. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.
Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes. E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.
Tabassum, H.; Mahmood, A.; Zhu, B. J.; Liang, Z. B.; Zhong, R. Q.; Guo, S. J.; Zou. R. Q. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci. 2019, 12, 2924–2956.
Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization. reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.
Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan. C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.
Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang. T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Zhou, P.; Hou, X. G.; Chao, Y. G.; Yang, W. X.; Zhang, W. Y.; Mu, Z. J.; Lai, J. P.; Lv, F.; Yang, K.; Liu, Y. X. et al. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 2019, 10, 5898–5905.
Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu. X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.
Wang, X.; Wang, Z. Y.; de Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. G. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.
Fang, Z. B.; Liu, T. T.; Liu, J. X.; Jin, S. Y.; Wu, X. P.; Gong, X. Q.; Wang, K. C.; Yin, Q.; Liu, T. F.; Cao, R. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 12515–12523.
Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu. X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.
Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang. Z. H. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322.
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui. J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.
Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.
Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li. Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.
Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao. C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.
Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.
Ahmed, B.; Anjum, D. H.; Gogotsi, Y.; Alshareef. H. N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256.
Li, S. B.; Zhang, P.; Wang, Y. F.; Sarvari, H.; Liu, D. T.; Wu, J.; Yang, Y. J.; Wang, Z. M.; Chen. Z. D. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 2017, 10, 1092–1103.
George. S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.
Zhao, Y.; Zheng, K.; Sun. X. L. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2018, 2, 2583–2604.
Cremers, V.; Puurunen, R. L.; Dendooven. J. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl. Phys. Rev. 2019, 6, 021302.
Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu. J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.
Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang. S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.
Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen. W. X. Engineering a metal-organic framework derived Mn-N-4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li. Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Ma, D. D.; Zhu. Q. L. MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coord. Chem. Rev. 2020, 422, 213483.
He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance. and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.
Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin. Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.
Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure–function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169–184.
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.
Aydin, C.; Lu, J.; Browning, N. D.; Gates. B. C. A “smart” catalyst: Sinter-resistant supported iridium clusters visualized with electron microscopy. Angew. Chem., Int. Ed. 2012, 51, 5929–5934.
Li, L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N. Copper as a single metal atom based photo-, electro-. and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.
Hage, F. S.; Radtke, G.; Kepaptsoglou, D. M.; Lazzeri, M.; Ramasse. Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 2020, 367, 1124–1127.
Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.
Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes. E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.
Shang, H. S.; Zhao, Z. H.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Li, A.; Dong, J. C.; An, P. F.; Zheng, L. R.; Chen. W. X. Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22607–22612.
Colliex, C.; Gloter, A.; March, K.; Mory, C.; Stéphan, O.; Suenaga, K.; Tencé. M. Capturing the signature of single atoms with the tiny probe of a STEM. Ultramicroscopy 2012, 123, 80–89.
Coperet. C. C–H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chem. Rev. 2010, 110, 656–680.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.
Li, X. N.; Yang, X. F.; Zhang, J. M.; Huang, Y. Q.; Liu. B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521–2531.
Gates, B. C. Supported metal clusters: Synthesis, structure. and catalysis. Chem. Rev. 1995, 95, 511–522.
de Groot. F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 2001, 101, 1779–1808.
Kowalska, J. K.; Lima, F. A.; Pollock, C. J.; Rees, J. A.; DeBeer. S. A practical guide to high-resolution X-ray spectroscopic measurements and their applications in bioinorganic chemistry. Isr. J. Chem. 2016, 56, 803–815.
Rehr, J. J.; Albers. R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.
Funke, H.; Scheinost, A. C.; Chukalina. M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.
Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.
Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma. T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li. Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.
Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824–2832.
Pertot, Y.; Schmidt, C.; Matthews, M.; Chauvet, A.; Huppert, M.; Svoboda, V.; von Conta, A.; Tehlar, A.; Baykusheva, D.; Wolf, J. P. et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 2017, 355, 264–267.
Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo. T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao. S. Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.
Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong. J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.
Zhou, G. M.; Wang, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.
Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng. X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.
Zhu, X. R.; Yan, J. X.; Gu, M.; Liu, T. Y.; Dai, Y. F.; Gu, Y. H.; Li. Y. F. Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: A combined density functional theory and machine learning study. J. Phys. Chem. Lett. 2019, 10, 7760–7766.
Cao, L. J.; Shao, Y. F.; Pan, H.; Lu. Z. G. Designing efficient dual-metal single-atom electrocatalyst TMZnN6 (TM = Mn, Fe, Co, Ni, Cu, Zn) for oxygen reduction reaction. J. Phys. Chem. C 2020, 124, 11301–11307.
Luo, G.; Jing, Y.; Li. Y. F. Rational design of dual-metal-site catalysts for electroreduction of carbon dioxide. J. Mater. Chem. A 2020, 8, 15809–15815.
Hu, R. M.; Li, Y. C.; Zeng, Q. W.; Shang. J. X. Role of active sites in N-coordinated Fe-Co dual-metal doped graphene for oxygen reduction and evolution reactions: A theoretical insight. Appl. Surf. Sci. 2020, 525, 146588.
Guan, E. J.; Ciston, J.; Bare, S. R.; Runnebaum, R. C.; Katz, A.; Kulkarni, A.; Kronawitter, C. X.; Gates. B. C. Supported metal pair-site catalysts. ACS Catal. 2020, 10, 9065–9085.
Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.
Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He. G. H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681.
Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu. X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, 2107421.
Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.
Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li. Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Zhang, L. Z.; Jia, Y.; Liu, H. L.; Zhuang, L. Z.; Yan, X. C.; Lang, C. G.; Wang, X.; Yang, D. J.; Huang, K. K.; Feng, S. H. et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 9404–9408.
Wang, B. W.; Zou, J. X.; Shen, X. C.; Yang, Y. C.; Hu, G. Z.; Li, W.; Peng, Z. M.; Banham, D.; Dong, A. G.; Zhao. D. Y. Nanocrystal supracrystal-derived atomically dispersed Mn-Fe catalysts with enhanced oxygen reduction activity. Nano Energy 2019, 63, 103851.
Liu, D. X.; Wang, B.; Li, H. G.; Huang, S. F.; Liu, M. M.; Wang, J.; Wang, Q. J.; Zhang, J. J.; Zhao, Y. F. Distinguished Zn. Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 2019, 58, 277–283.
Khan, K.; Yan, X. X.; Yu, Q. M.; Bae, S. H.; White, J. J.; Liu, J. X.; Liu, T. C.; Sun, C. J.; Kim, J.; Cheng, H. M. et al. Stone–Wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy 2021, 90, 106488.
Zeng, L.; Chen, J. W.; Zhong, L. X.; Zhen, W. L.; Tay, Y. Y.; Li, S. Z.; Wang, Y. G.; Huang, L. M.; Xue. C. Synergistic effect of Ru-N4 sites and Cu-N3 sites in carbon nitride for highly selective photocatalytic reduction of CO2 to methane. Appl. Catal. B Environ. 2022, 307, 121154.
Liang, Z. F.; Yang, D. W.; Tang, P. Y.; Zhang, C. Q.; Jacas Biendicho, J.; Zhang, Y.; Llorca, J.; Wang, X.; Li, J. S.; Heggen, M. et al. Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003507.
Mon, M.; Rivero-Crespo, M. A.; Ferrando-Soria, J.; Vidal-Moya, A.; Boronat, M.; Leyva-Pérez, A.; Corma, A.; Hernandez-Garrido, J. C.; López-Haro, M.; Calvino, J. J. et al. Synthesis of densely packaged, ultrasmall Pt02 clusters within a thioether-functionalized MOF: Catalytic activity in industrial reactions at low temperature. Angew. Chem., Int. Ed. 2018, 57, 6186–6191.
Yang, T.; Mao, X. N.; Zhang, Y.; Wu, X. P.; Wang, L.; Chu, M. Y.; Pao, C. W.; Yang, S. Z.; Xu, Y.; Huang. X. Q. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 2021, 12, 6022.
Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed CO2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.
Tian, R. Z.; Ma, H. Y.; Ye, W.; Li, Y. J.; Wang, S. P.; Zhang, Z. R.; Liu, S. D.; Zang, M. S.; Hou, J. X.; Xu, J. Y. et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 2022, 32, 2204025.
Wei, Y. S.; Sun, L. M.; Wang, M.; Hong, J. H.; Zou, L. L.; Liu, H. W.; Wang, Y.; Zhang, M.; Liu, Z.; Li, Y. W. et al. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: A heteroatom modulator approach. Angew. Chem., Int. Ed. 2020, 59, 16013–16022.
Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.
Xiao, M. L.; Zhang, H.; Chen, Y. T.; Zhu, J. B.; Gao, L. Q.; Jin, Z.; Ge, J. J.; Jiang, Z.; Chen, S. L.; Liu, C. P. et al. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy 2018, 46, 396–403.
He, T. W.; Puente Santiago, A. R.; Du. A. J. Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J. Catal. 2020, 388, 77–83.
Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.
Zhou, Y.; Song, E. H.; Chen, W.; Segre, C. U.; Zhou, J. D.; Lin, Y. C.; Zhu, C.; Ma, R. G.; Liu, P.; Chu, S. F. et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 2020, 32, 2003484.
Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.
Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.
Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li. Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.
Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng. Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180.
Zaman, K.; Moemen. M. A. E. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sust. Energy Rev. 2017, 74, 1119–1130.
Kong, L. J.; Zhong, M.; Shuang, W.; Xu, Y. H.; Bu. X. H. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 2020, 49, 2378–2407.
Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li. Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.
Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; Xia, Z. H.; Dai, L. M.; Amal, R.; Lu. X. Y. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.
Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun. S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 21976–21979.
Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li. Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.
Shang, H. S.; Chen, W. X.; Jiang, Z. L.; Zhou, D. N.; Zhang. J. T. Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chem. Commun. 2020, 56, 3127–3130.
Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai. H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.
Zhou, Z.; Pei, Z. X.; Wei, L.; Zhao, S. L.; Jian, X.; Chen, Y. Electrocatalytic hydrogen evolution under neutral pH conditions: Current understandings, recent advances. and future prospects. Energy Environ. Sci. 2020, 13, 3185–3206.
Yan, Y.; Xia, B. Y.; Xu, Z. C.; Wang. X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014, 4, 1693–1705.
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models. to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.
Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun. W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.
Dubouis, N.; Grimaud. A. The hydrogen evolution reaction: From material to interfacial descriptors. Chem. Sci. 2019, 10, 9165–9181.
Shi, Y. M.; Zhang. B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.
Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang. Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
Yang, Y.; Qian, Y. M.; Li, H. J.; Zhang, Z. H.; Mu, Y. W.; Do, D.; Zhou, B.; Dong, J.; Yan, W. J.; Qin, Y. et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eaba6586.
Liu, X.; Jiao, Y.; Zheng, Y.; Davey, K.; Qiao. S. Z. A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: New insight into the alkaline mechanism. J. Mater. Chem. A 2019, 7, 3648–3654.
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo. T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
Gong, M.; Dai. H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.
Chung, D. Y.; Lopes, P. P.; Martins, P. F. B. D.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.
Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He. C. X. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103.
Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan. J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.
Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen. H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.
Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai. L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.
Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang. X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.
Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.
Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu. Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.
Chen, J. Y.; Cui, P. X.; Zhao, G. Q.; Rui, K.; Lao, M. M.; Chen, Y. P.; Zheng, X. S.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X. et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 12540–12544.
Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir. and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.
Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou. X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.
Zhang, J. T.; Yu, L.; Chen, Y.; Lu, X. F.; Gao, S. Y.; Lou. X. W. D. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 2020, 32, 1906432.
Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz. R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.
Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou. X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.
Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.
Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai. L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.
Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. A.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu. Q. Sulfuration of a Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.
Xia, W.; Tang, J.; Li, J. J.; Zhang, S. H.; Wu, K. C. W.; He, J. P.; Yamauchi. Y. Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 13354–13359.
Martinez, U.; Babu, S. K.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay. P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2019, 31, 1806545.
Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao. D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.
Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.
Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.
Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang. S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.
Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li. J. F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715–719.
Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu. Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 7384–7389.
Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao. S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.
Zhang, J. C.; Yang, H. B.; Liu. B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.
Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.
Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou. X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.
Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee. J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.
Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.
Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu. Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 1201–1204.
Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.
Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L. P.; Xia, Z. H.; Dai, L. M. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 2013, 3, 1810.
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements. challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.
Yang, Q.; Jia, Y.; Wei, F. F.; Zhuang, L. Z.; Yang, D. J.; Liu, J. Z.; Wang, X.; Lin, S.; Yuan, P.; Yao. X. D. Understanding the activity of Co-N4−xCx in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 6122–6127.
Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.
Fang, X. Z.; Jiao, L.; Yu, S. H.; Jiang. H. L. Metal-organic framework-derived FeCo-N-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. Chemsuschem 2017, 10, 3019–3024.
Zhang, D. Y.; Chen, W. X.; Li, Z.; Chen, Y. J.; Zheng, L. R.; Gong, Y.; Li, Q. H.; Shen, R. A.; Han, Y. H.; Cheong, W. C. et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem. Commun. 2018, 54, 4274–4277.
Gong, S. P.; Wang, C. L.; Jiang, P.; Hu, L.; Lei, H.; Chen. Q. W. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J. Mater. Chem. A 2018, 6, 13254–13262.
Zhou, Y. D.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P. W.; Chen, R. J.; Sun, S. R. Revealing of active sites and catalytic mechanism in N-coordinated Fe. Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 2020, 11, 1404–1410.
Liu, M. H.; Su, H.; Cheng, W. R.; Yu, F. F.; Li, Y. L.; Zhou, W. L.; Zhang, H.; Sun, X.; Zhang, X. X.; Wei, S. Q. et al. Synergetic dual-ion centers boosting metal organic framework alloy catalysts toward efficient two electron oxygen reduction. Small 2022, 18, 2202248.
Zhou, X. Y.; Gao, J. J.; Hu, Y. X.; Jin, Z. Y.; Hu, K. L.; Reddy, K. M.; Yuan, Q. H.; Lin, X.; Qiu. H. J. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 2022, 22, 3392–3399.
Zhong, X. W.; Ye, S. L.; Tang, J.; Zhu, Y. M.; Wu, D. J.; Gu, M.; Pan, H.; Xu. B. M. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Appl. Catal. B Environ. 2021, 286, 119891.
Zhao, R.; Liang, Z. B.; Gao, S.; Yang, C.; Zhu, B. J.; Zhao, J. L.; Qu, C.; Zou, R. Q.; Xu. Q. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew. Chem., Int. Ed. 2019, 58, 1975–1979.
Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.
Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.
Zhang, L.; Zhao, Z. J.; Gong. J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.
Lu, Q.; Jiao. F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439–456.
Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. et al. Retracted article: Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2019, 2, 55–61.
Jiao, J. P.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.
Jiang, Z. L.; Wang, T.; Pei, J. P.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.
Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui. J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.
Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zhene, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser. P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.
Cheng, T.; Xiao, H.; Goddard III. W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 2016, 138, 13802–13805.
Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li. Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.
Zheng, X. L.; De Luna, P.; de Arquer, F. P. G.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.
Zhang, S.; Fan, Q.; Xia, R.; Meyer. T. J. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264.
Ouyang, Y. X.; Shi, L.; Bai, X. W.; Li, Q.; Wang. J. L. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 2020, 11, 1807–1813.
Xie, W. F.; Li, H.; Cui, G. Q.; Li, J. B.; Song, Y. K.; Li, S. J.; Zhang, X.; Lee, J. Y.; Shao, M. F.; Wei. M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7382–7388.
Yun, R. R.; Zhan, F. Y.; Wang, X. J.; Zhang, B. B.; Sheng, T.; Xin, Z. F.; Mao, J. J.; Liu, S. J.; Zheng. B. S. Design of binary Cu-Fe sites coordinated with nitrogen dispersed in the porous carbon for synergistic CO2 electroreduction. Small 2021, 17, 2006951.
Ding, T.; Liu, X. K.; Tao, Z. N.; Liu, T. Y.; Chen, T.; Zhang, W.; Shen, X. Y.; Liu, D.; Wang, S. C.; Pang, B. B. et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2021, 143, 11317–11324.
Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han. J. W. Precisely constructing orbital coupling-modulated dual-atom fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.
Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.
Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.
Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li. Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao. S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao. S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.
Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng. J. Achieving a record-high yield rate of 120.9 µgNH3·mgcat−1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.
Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.
Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.
Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li. Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.
Mukherjee, S.; Yang, X. X.; Shan, W. T.; Samarakoon, W.; Karakalos, S.; Cullen, D. A.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F. et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020, 4, 1900821.
Wang, J.; You, R.; Zhao, C.; Zhang, W.; Liu, W.; Fu, X. P.; Li, Y. Y.; Zhou, F. Y.; Zheng, X. S.; Xu, Q. et al. N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 2020, 10, 2754–2761.
Shi, Q.; Ji, Y. J.; Chen, W. X.; Zhu, Y. X.; Li, J.; Liu, H. Z.; Li, Z.; Tian, S. B.; Wang, L. G.; Zhong, Z. Y. et al. Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. Natl. Sci. Rev. 2020, 7, 600–608.
Lu, Y. B.; Wang, J. M.; Yu, L.; Kovarik, L.; Zhang, X. W.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156.
Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm. R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.
Yoo, M.; Yu, Y. S.; Ha, H.; Lee, S.; Choi, J. S.; Oh, S.; Kang, E.; Choi, H.; An, H.; Lee, K. S. et al. A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 2020, 13, 1231–1239.
Li, F. Y.; Liu, X. Y.; Chen. Z. F. 1 + 1′ > 2: Heteronuclear biatom catalyst outperforms its homonuclear counterparts for CO oxidation. Small Methods 2019, 3, 1800480.
Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li. Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584–2588.
Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes. E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325–332.