Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Communication

Fast UV–vis–NIR photoresponse of self-oriented F16CuPc nanoribbons

Lingyu Zhang1,§Xingyu Wang1,2,§Wei Zhou1Hao Wang1Jiaxun Song1Zihao Zhao1Jihui Liao1Jian Song1Yajun Li1Jinyou Xu1 ()
Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

§ Lingyu Zhang and Xingyu Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Periodic hydrophobic nanogrooves formed on a sapphire surface enable self-oriented growth of F16CuPc nanoribbons with a consistent growth axis, and accordingly, photodetectors with response times of tens of milliseconds in the ultraviolet–visible–near-infrared (UV–vis–NIR) spectral range are implemented directly on their growth substrate.

Abstract

Controlling the vapor-deposited nanoribbons to grow along a consistent orientation will enable the desired in situ integration of functional devices, representing a major technological advance compared to post-growth processing strategies. In this work, n-type F16CuPc molecules are self-assembled into horizontally-oriented nanoribbons with a consistent growth axis after creating periodic hydrophobic nanogrooves on a sapphire surface. Consequently, electrodes are deposited directly on the growth substrate to enable in situ fabrication of photodetectors. Depending on the deposited electrodes, these horizontally-oriented nanoribbons are connected to form a monolithic photodetector with a large sensing area or an on-chip array of photodetectors with multiple detector units. This in situ integration strategy avoids potential structural damage and contamination from impurities associated with post-growth processing steps. Therefore, the vapor-deposited nanoribbons can retain their high quality during the device manufacturing process, which contributes to performance improvement. As a result, the in-situ integrated F16CuPc photodetectors exhibit a sensitive response in the ultraviolet–visible–near-infrared (UV–vis–NIR) region. The response time is on the order of tens of milliseconds, the fastest record ever for the F16CuPc-based photodetectors. Furthermore, statistics from an array of 6 × 6 photodetectors show little variation in their sensitivity and response time, and hence this in situ fabrication scheme will contribute to the implementation of on-chip integrated photodetectors with consistent performance based on bottom-up nanoribbons. Overall, this self-oriented growth provides a versatile option to achieve desired in-situ integrated functional devices based on bottom-up nanoribbons.

Electronic Supplementary Material

Download File(s)
12274_2023_5493_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Pan, J.; Deng, W.; Xu, X. Z.; Jiang, T. H.; Zhang, X. J.; Jie, J. S. Photodetectors based on small-molecule organic semiconductor crystals. Chin. Phys. B 2019, 28, 038102.

[2]

Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

[3]

Zhuang, X. J.; Guo, P. F.; Zhang, Q. L.; Liu, H. W.; Li, D.; Hu, W.; Zhu, X. L.; Zhou, H.; Pan, A. L. Lateral composition-graded semiconductor nanoribbons for multi-color nanolasers. Nano Res. 2016, 9, 933–941.

[4]

Zou, T. Y.; Wang, X. Y.; Ju, H. D.; Wu, Q.; Guo, T. T.; Wu, W.; Wang, H. Crystal structure tuning in organic nanomaterials for fast response and high sensitivity visible-NIR photo-detector. J. Mater. Chem. C 2018, 6, 1495–1503.

[5]

Park, J. H.; Cho, S. W.; Park, S. H.; Jeong, J. G.; Kim, H. J.; Yi, Y.; Cho, M. H. The effect of copper hexadecafluorophthalocyanine (F16CuPc) inter-layer on pentacene thin-film transistors. Synth. Met. 2010, 160, 108–112.

[6]

Tang, Q.; Li, L.; Song, Y.; Liu, Y.; Li, H.; Xu, W.; Liu, Y.; Hu, W.; Zhu, D. Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater. 2007, 19, 2624–2628.

[7]

Jin-Phillipp, N. Y.; Krauss, T. N.; Van Aken, P. A. The growth of one-dimensional CuPcF16 nanostructures on gold nanoparticles as studied by transmission electron microscopy tomography. ACS Nano 2012, 6, 4039–4044.

[8]

Shen, C. F.; Kahn, A. Electronic structure, diffusion, and p-doping at the Au/F16CuPc interface. J. Appl. Phys. 2001, 90, 4549–4554.

[9]

Mbenkum, B. N.; Barrena, E.; Zhang, X. N.; Kelsch, M.; Dosch, H. Selective growth of organic 1-D structures on Au nanoparticle arrays. Nano Lett. 2006, 6, 2852–2855.

[10]

Flores, S. Y.; Gonzalez-Espiet, J.; Cintrón, J.; Villanueva, N. D. J.; Camino, F. E.; Kisslinger, K.; Cruz, D. M. P.; Rivera, R. D.; Fonseca, L. F. Fluorinated iron and cobalt phthalocyanine nanowire chemiresistors for environmental gas monitoring at parts-per-billion levels. ACS Appl. Nano Mater. 2022, 5, 4688–4699.

[11]

Yan, D. W.; Feng, Y. T.; Wang, C. R. Self-assembled array of rectangular single-crystal microtubes of perchlorinated copper phthalocyanines. Prog. Nat. Sci. :Mater. Int. 2013, 23, 543–548.

[12]

Ling, M. M.; Bao, Z. N.; Erk, P. Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors. Appl. Phys. Lett. 2006, 89, 163516.

[13]

Wu, Y. M.; Zhang, X. J.; Pan, H. H.; Zhang, X. W.; Zhang, Y. P.; Zhang, X. Z.; Jie, J. S. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors. Nanotechnology 2013, 24, 355201.

[14]

Zhang, Y. P.; Wang, X. D.; Wu, Y. M.; Jie, J. S.; Zhang, X. W.; Xing, Y. L.; Wu, H. H.; Zou, B.; Zhang, X. J.; Zhang, X. H. Aligned ultralong nanowire arrays and their application in flexible photodetector devices. J. Mater. Chem. 2012, 22, 14357–14362.

[15]

Koshy, R.; Menon, C. S. Effect of vacuum annealing on the optoelectric and morphological properties of F16CuPc thin films. J. Chem. 2012, 9, 101686.

[16]

Kol’tsov, E.; Basova, T.; Semyannikov, P.; Igumenov, I. Synthesis and investigations of copper hexadecafluorophthalocyanine CuPcF16. Mater. Chem. Phys. 2004, 86, 222–227.

[17]

Nath, D.; Dey, P.; Joseph, A. M.; Rakshit, J. K.; Roy, J. N. Photocurrent generation under forward bias with interfacial tunneling of carrier at pentacene/F16CuPc heterojunction photodetector. J. Alloys Compd. 2020, 815, 152401.

[18]

Park, J. E.; Mukherjee, B.; Cho, H.; Kim, S.; Pyo, S. Flexible N-channel organic phototransistor on polyimide substrate. Synth. Met. 2011, 161, 143–147.

[19]

Yan, H.; Li, Y.; Qin, J. K.; Hu, P. A.; Zhen, L.; Xu, C. Y. Charge transport behavior and ultrasensitive photoresponse performance of exfoliated F16CuPc nanoflakes. Adv. Opt. Mater. 2019, 7, 1901097.

[20]

Yoon, S. M.; Song, H. J.; Hwang, I. C.; Kim, K. S.; Choi, H. C. Single crystal structure of copper hexadecafluorophthalocyanine (F16CuPc) ribbon. Chem. Comm. 2010, 46, 231–233.

[21]

Sun, Y.; Dong, T. G.; Yu, L. W.; Xu, J.; Chen, K. J. Planar growth, integration, and applications of semiconducting nanowires. Adv. Mater. 2020, 32, 1903945.

[22]

Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z. Y. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560–4580.

[23]

Li, L.; Auer, E.; Liao, M. Y.; Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Lugstein, A.; Koide, Y.; Bando, Y.; Golberg, D. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 2011, 3, 1120–1126.

[24]

Fang, X. S.; Xiong, S. L.; Zhai, T. Y.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Koide, Y.; Zhang, X. G.; Qian, Y. T.; Golberg, D. High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors. Adv. Mater. 2009, 21, 5016–5021.

[25]

Li, L.; Wu, P. C.; Fang, X. S.; Zhai, T. Y.; Dai, L.; Liao, M. Y.; Koide, Y.; Wang, H. Q.; Bando, Y.; Golberg, D. Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 2010, 22, 3161–3165.

[26]

Yim, J. W. L.; Chen, D.; Brown, G. F.; Wu, J. Q. Synthesis and ex situ doping of ZnTe and ZnSe nanostructures with extreme aspect ratios. Nano Res. 2009, 2, 931–937.

[27]

Gabai, R.; Ismach, A.; Joselevich, E. Nanofacet lithography: A new bottom-up approach to nanopatterning and nanofabrication by soft replication of spontaneously faceted crystal surfaces. Adv. Mater. 2007, 19, 1325–1330.

[28]

Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E. Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue-UV photodetectors. Adv. Mater. 2015, 27, 3999–4005.

[29]

Shalev, E.; Oksenberg, E.; Rechav, K.; Popovitz-Biro, R.; Joselevich, E. Guided CdSe nanowires parallelly integrated into fast visible-range photodetectors. ACS Nano 2017, 11, 213–220.

[30]

Xu, J. Y.; Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E. Bottom-up tri-gate transistors and submicrosecond photodetectors from guided CdS nanowalls. J. Am. Chem. Soc. 2017, 139, 15958–15967.

[31]

Xu, J. Y.; Rechav, K.; Popovitz-Biro, R.; Nevo, I.; Feldman, Y.; Joselevich, E. High-gain 200 ns photodetectors from self-aligned CdS-CdSe core–shell nanowalls. Adv. Mater. 2018, 30, 1800413.

[32]

Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633.

[33]

Hlawacek, G.; Puschnig, P.; Frank, P.; Winkler, A.; Ambrosch-Draxl, C.; Teichert, C. Characterization of step-edge barriers in organic thin-film growth. Science 2008, 321, 108–111.

[34]

Wacaser, B. A.; Dick, K. A.; Johansson, J.; Borgström, M. T.; Deppert, K.; Samuelson, L. Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 2009, 21, 153–165.

[35]

Zhang, G. Y.; Yan, M. Q.; Teng, X. Y.; Bi, H.; Han, Y. Y.; Tian, M. L.; Wang, M. T. Formation of ultra-long nanoribbons by self-assembly of carbon dots and anionic oligomers for multi-colored fluorescence and electrical conduction. Chem. Commun. 2014, 50, 10244–10247.

[36]

El-Nahass, M. M.; Abd-El-Rahman, K. F.; Al-Ghamdi, A. A.; Asiri, A. M. Optical properties of thermally evaporated tin-phthalocyanine dichloride thin films, SnPcCl2. Phys. B: Condens. Matter 2004, 344, 398–406.

[37]

Jiang, Z.; Yang, F.; Yang, G. D.; Kong, L.; Jones, M. O.; Xiao, T. C.; Edwards, P. P. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J. Photochem. Photobiol. A: Chem. 2010, 212, 8–13.

[38]

Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (B) 1966, 15, 627–637.

[39]

Fang, Y. J.; Armin, A.; Meredith, P.; Huang, J. S. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2019, 13, 1–4.

[40]

Ghosh, S.; Kargar, F.; Mohammadzadeh, A.; Rumyantsev, S.; Balandin, A. A. Low-frequency electronic noise in quasi-2D van der Waals antiferromagnetic semiconductor FePS3-signatures of phase transitions. Adv. Electron. Mater. 2021, 7, 2100408.

[41]

Liu, G. X.; Rumyantsev, S.; Bloodgood, M. A.; Salguero, T. T.; Shur, M.; Balandin, A. A. Low-frequency electronic noise in quasi-1D TaSe3 van der Waals Nanowires. Nano Lett. 2017, 17, 377–383.

[42]

Chen, C. H.; Lee, C. T. High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors. IEEE Photonics Technol. Lett. 2013, 25, 348–351.

[43]

Song, J. X.; Shu, K. X.; Wang, J. L.; Wang, X. F.; Huo, N. J.; Nötzel, R. Origin of the low-frequency 1/f noise of a photoelectrochemical photodetector. IEEE Trans. Electron Devices 2022, 69, 6184–6187.

[44]

Rose, A. Performance of photoconductors. Proc. IRE 1955, 43, 1850–1869.

[45]

Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352.

[46]

Bube, R. H. Photoconductivity of the sulfide, selenide, and telluride of zinc or cadmium. Proc. IRE 1955, 43, 1836–1850.

Nano Research
Pages 9561-9568
Cite this article:
Zhang L, Wang X, Zhou W, et al. Fast UV–vis–NIR photoresponse of self-oriented F16CuPc nanoribbons. Nano Research, 2023, 16(7): 9561-9568. https://doi.org/10.1007/s12274-023-5493-5
Topics:
Metrics & Citations  
Article History
Copyright
Return