AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review

Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion

Baohong Zhang1,§Yanhong Li1,§Haoze Bai1Binbin Jia1( )Di Liu2( )Lidong Li1( )
School of Chemistry, Beihang University, Beijing 100191, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Baohong Zhang and Yanhong Li contributed equally to this work.

Show Author Information

Graphical Abstract

This minireview summarizes the synthetic strategy of three-dimensional (3D) self-supported amorphous nanomaterials and their application in the field of energy storage and conversion. Some personal perspectives are also discussed to encourage more attractive studies in 3D self-supported amorphous nanomaterials.

Abstract

The advancement of next-generation energy technologies calls for rationally designed and fabricated electrode materials that have desirable structures and satisfactory performance. Three-dimensional (3D) self-supported amorphous nanomaterials have attracted great enthusiasm as the cornerstone for building high-performance nanodevices. In particular, tremendous efforts have been devoted to the design, fabrication, and evaluation of self-supported amorphous nanomaterials as electrodes for energy storage and conversion devices in the past decade. However, the electrochemical performance of devices assembled with 3D self-supported amorphous nanomaterials still remains to be dramatically promoted to satisfy the demands for more practical applications. In this review, we aim to outline the achievements made in recent years in the development of 3D self-supported amorphous nanomaterials for a broad range of energy storage and conversion processes. We firstly summarize different synthetic strategies employed to synthesize 3D nanomaterials and to tailor their composition, morphology, and structure. Then, the performance of these 3D self-supported amorphous nanomaterials in their corresponding energy-related reactions is highlighted. Finally, we draw out our comprehensive understanding towards both challenges and prospects of this promising field, where valuable guidance and inspiration will surely facilitate further development of 3D self-supported amorphous nanomaterials, thus enabling more highly efficient energy storage and conversion devices that play a key role in embracing a sustainable energy future.

References

[1]

Mohtadi, R.; Orimo, S. I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2017, 2, 16091.

[2]

Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519.

[3]

Trogadas, P.; Coppens, M. O. Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 2020, 49, 3107–3141.

[4]

Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

[5]

Attia, P. M.; Grover, A.; Jin, N.; Severson, K. A.; Markov, T. M.; Liao, Y. H.; Chen, M. H.; Cheong, B.; Perkins, N.; Yang, Z. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402.

[6]

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

[7]

Hammes-Schiffer, S.; Galli, G. Integration of theory and experiment in the modelling of heterogeneous electrocatalysis. Nat. Energy 2021, 6, 700–705.

[8]

Jung, S. M.; Yun, S. W.; Kim, J. H.; You, S. H.; Park, J.; Lee, S.; Chang, S. H.; Chae, S. C.; Joo, S. H.; Jung, Y. et al. Selective electrocatalysis imparted by metal-insulator transition for durability enhancement of automotive fuel cells. Nat. Catal. 2020, 3, 639–648.

[9]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[10]

Fang, C. X.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[11]

Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J. F.; Shi, Y.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

[12]

Chen, L.; Wang, N.; Zhang, Z. F.; Yu, H. F.; Wu, J.; Deng, S. Q.; Liu, H.; Qi, H.; Chen, J. Local diverse polarization optimized comprehensive energy-storage performance in lead-free superparaelectrics. Adv. Mater. 2022, 34, 2205787.

[13]

Chen, L.; Deng, S. Q.; Liu, H.; Wu, J.; Qi, H.; Chen, J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 2022, 13, 3089.

[14]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[15]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 134, e202213318.

[16]

Comer, B. M.; Fuentes, P.; Dimkpa, C. O.; Liu, Y. H.; Fernandez, C. A.; Arora, P.; Realff, M.; Singh, U.; Hatzell, M. C.; Medford, A. J. Prospects and challenges for solar fertilizers. Joule 2019, 3, 1578–1605.

[17]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[18]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[19]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[20]

Sun, H. T.; Zhu, J.; Baumann, D.; Peng, L. L.; Xu, Y. X.; Shakir, I.; Huang, Y.; Duan, X. F. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 2019, 4, 45–60.

[21]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[22]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[23]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 134, e202115735.

[24]

Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

[25]

Han, X.; Wu, G.; Du, J. Y.; Pi, J. L.; Yan, M. Y.; Hong, X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chem. Commun. 2022, 58, 223–237.

[26]

Taloni, A.; Vodret, M.; Costantini, G.; Zapperi, S. Size effects on the fracture of microscale and nanoscale materials. Nat. Rev. Mater. 2018, 3, 211–224.

[27]

Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

[28]

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

[29]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[30]

Chi, W. G.; Banerjee, S. K. Application of perovskite quantum dots as an absorber in perovskite solar cells. Angew. Chem., Int. Ed. 2022, 61, e202112412.

[31]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[32]

Zhang, G. Q.; Sewell, C. D.; Zhang, P. X.; Mi, H. W.; Lin, Z. Q. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 2020, 71, 104645.

[33]

Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

[34]

Wang, P. C.; Wang, B. G. Designing self-supported electrocatalysts for electrochemical water splitting: Surface/interface engineering toward enhanced electrocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 59593–59617.

[35]

Yan, S. H.; Abhilash, K. P.; Tang, L. Y.; Yang, M.; Ma, Y. F.; Xia, Q. Y.; Guo, Q. B.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 2019, 15, 1804371.

[36]

Zhao, H. P.; Lei, Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 2020, 10, 2001460.

[37]

Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

[38]

Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1700005.

[39]

Liu, S. Q.; Tang, Z. R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053–5075.

[40]

Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

[41]

Zhao, J. X.; Ren, X.; Ma, H. M.; Sun, X.; Zhang, Y.; Yan, T.; Wei, Q.; Wu, D. Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2017, 5, 10093–10098.

[42]

Yang, L.; Guo, Z. L.; Huang, J.; Xi, Y. N.; Gao, R. J.; Su, G.; Wang, W.; Cao, L. X.; Dong, B. H. Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: Outer and inner structural design for superior water splitting. Adv. Mater. 2017, 29, 1704574.

[43]

Xi, Y. N.; Dong, B. H.; Dong, Y. N.; Mao, N.; Ding, L.; Shi, L.; Gao, R. J.; Liu, W.; Su, G.; Cao, L. X. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater. 2016, 28, 1355–1362.

[44]

He, T.; Zu, L. H.; Zhang, Y.; Mao, C. L.; Xu, X. X.; Yang, J. H.; Yang, S. H. Amorphous semiconductor nanowires created by site-specific heteroatom substitution with significantly enhanced photoelectrochemical performance. ACS Nano 2016, 10, 7882–7891.

[45]

Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 2019, 19, 1186.

[46]

Fashu, S.; Khan, R. Recent work on electrochemical deposition of Zn-Ni(-X) alloys for corrosion protection of steel. Anti-Corros. Method. Mater. 2019, 66, 45–60.

[47]

Bernasconi, R.; Magagnin, L. Review—Ruthenium as diffusion barrier layer in electronic interconnects: Current literature with a focus on electrochemical deposition methods. J. Electrochem. Soc. 2019, 166, D3219–D3225.

[48]

Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 163904.

[49]

Yoon, S.; Yun, J. Y.; Lim, J. H.; Yoo, B. Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. J. Alloys Compd. 2017, 693, 964–969.

[50]

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

[51]

Gao, Y. Q.; Li, H. B.; Yang, G. W. Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability. J. Appl. Phys. 2016, 119, 034902.

[52]

Wu, Y. H.; Han, M. G. Electrodeposited Fe-P nanowire arrays in hard-anodic aluminum oxide templates with controllable magnetic properties by thermal annealing. J. Alloys Compd. 2016, 688, 783–789.

[53]

Wang, Y.; Ni, Y. M.; Wang, X.; Zhang, N.; Li, P. H.; Dong, J.; Liu, B.; Liu, J. H.; Cao, M. H.; Hu, C. W. Template electro-etching-mediated FeOOH nanotubes as highly efficient photoactive electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5718–5725.

[54]

Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 2008, 20, 4135–4139.

[55]

Fan, R.; Chen, X. Y.; Wang, Z. H.; Custer, D.; Wan, J. D. Flow-regulated growth of titanium dioxide (TiO2) nanotubes in microfluidics. Small 2017, 13, 1701154.

[56]

Yu, D. L.; Zhu, X. F.; Xu, Z.; Zhong, X. M.; Gui, Q. F.; Song, Y.; Zhang, S. Y.; Chen, X. Y.; Li, D. D. Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 2014, 6, 8001–8005.

[57]

Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

[58]

Huynh, M.; Shi, C. Y.; Billinge, S. J. L.; Nocera, D. G. Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc. 2015, 137, 14887–14904.

[59]

Liang, W. H.; Tang, Y. K.; Liu, L.; Gao, Y.; Zeng, X. Y. Physical forces inducing thin amorphous carbon nanotubes derived from polymer nanotube/SiO2 hybrids with superior rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36985–36990.

[60]

Feng, J.; Yin, Y. D. Self-templating approaches to hollow nanostructures. Adv. Mater. 2019, 31, 1802349.

[61]

Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.

[62]

Fang, M.; Tan, X. L.; Liu, M.; Gong, X. X.; Zhang, L. D.; Fei, G. T. High density near amorphous InSb nanowire arrays and its photo-electric performance. J. Alloys Compd. 2015, 626, 35–41.

[63]

Zhang, L. Y.; Xue, D. S.; Fen, J. Magnetic properties of amorphous β-FeOOH nanowire arrays. J. Magn. Magn. Mater. 2006, 305, 228–232.

[64]

Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. 2010, 49, 4981–4985.

[65]

Lu, P.; Sun, Y.; Xiang, H. F.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434.

[66]

Huang, M.; Xi, B. J.; Mi, L. W.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Rationally designed three-layered TiO2@amorphous MoS3@carbon hierarchical microspheres for efficient potassium storage. Small 2022, 18, 2107819.

[67]

Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 2001, 78, 407–409.

[68]

Zhao, Y. S.; Di, C.; Yang, W.; Yu, G.; Liu, Y.; Yao, J. Photoluminescence and electroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater. 2006, 16, 1985–1991.

[69]

Liu, Y. H.; Song, H. M.; Bei, Z. M.; Zhou, L.; Zhao, C.; Ooi, B. S.; Gan, Q. Q. Ultra-thin dark amorphous TiOx hollow nanotubes for full spectrum solar energy harvesting and conversion. Nano Energy 2021, 84, 105872.

[70]

Zhang, X.; Zhang, Y.; Yu, B. B.; Yin, X. L.; Jiang, W. J.; Jiang, Y.; Hu, J. S.; Wan, L. J. Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 19277–19281.

[71]

Xiong, B. W.; Zhang, T. T.; Zhao, Y. L.; Wen, T.; Zhang, Q. W.; Bao, S. X.; Song, S. X. Removal of Cu(II) from wastewater by using mechanochemically activated carbonate-based tailings through chemical precipitation. Environ. Sci. Pollut. Res. 2019, 26, 35198–35207.

[72]

Kondalkar, M.; Fegade, U.; Attarde, S.; Ingle, S. Phosphate removal, mechanism, and adsorption properties of Fe-Mn-Zn oxide trimetal alloy nanocomposite fabricated via co-precipitation method. Sep. Sci. Technol. 2019, 54, 2682–2694.

[73]

Wang, Q.; Yu, J. X.; Chen, X. Y.; Du, D. T.; Wu, R. R.; Qu, G. Z.; Guo, X. T.; Jia, H. Z.; Wang, T. C. Non-thermal plasma oxidation of Cu(II)-EDTA and simultaneous Cu(II) elimination by chemical precipitation. J. Environ. Manag. 2019, 248, 109237.

[74]

Ai, Y. J.; Liu, L.; Zhang, C.; Qi, L.; He, M. Q.; Liang, Z.; Sun, H. B.; Luo, G. A.; Liang, Q. L. Amorphous flowerlike goethite FeOOH hierarchical supraparticles: Superior capability for catalytic hydrogenation of nitroaromatics in water. ACS Appl. Mater. Interfaces 2018, 10, 32180–32191.

[75]

Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater. Today Energy 2020, 18, 100548.

[76]

Wen, X.; Zhang, Q. M.; Shao, Z. Magnetron sputtering for ZnO: Ga scintillation film production and its application research status in nuclear detection. Crystals 2019, 9, 263.

[77]

Cao, L. M.; Zhang, Z.; Sun, L. L.; Gao, C. X.; He, M.; Wang, Y. Q.; Li, Y. C.; Zhang, X. Y.; Li, G.; Zhang, J. et al. Well-aligned boron nanowire arrays. Adv. Mater. 2001, 13, 1701–1704.

[78]

Hawkeye, M. M.; Brett, M. J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 2007, 25, 1317–1335.

[79]

Chetri, P.; Dhar, J. C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector. Appl. Phys. A 2019, 125, 286.

[80]

Xue, J. J.; Wu, T.; Dai, Y. Q.; Xia, Y. N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415.

[81]

Chen, H.; Huang, X. X.; Zhou, L. J.; Li, G. D.; Fan, M. H.; Zou, X. X. Electrospinning synthesis of bimetallic nickel-iron oxide/carbon composite nanofibers for efficient water oxidation electrocatalysis. ChemCatChem 2016, 8, 992–1000.

[82]

Lee, S. W.; Kim, H.; Kim, M. S.; Youn, H. C.; Kang, K.; Cho, B. W.; Roh, K. C.; Kim, K. B. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 2016, 315, 261–268.

[83]

Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of “sol–gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112.

[84]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[85]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[86]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[87]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202205946.

[88]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 61, e202212335.

[89]

Ren, X.; Wu, D.; Ge, R. X.; Sun, X.; Ma, H. M.; Yan, T.; Zhang, Y.; Du, B.; Wei, Q.; Chen, L. Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH. Nano Res. 2018, 11, 2024–2033.

[90]

Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16, 2000924.

[91]

Li, S. L.; Li, Z. C.; Ma, R. G.; Gao, C. L.; Liu, L. L.; Hu, L. P.; Zhu, J. L.; Sun, T. M.; Tang, Y. F.; Liu, D. M. et al. A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 3773–3780.

[92]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[93]

Huo, C. Z.; Cao, X. X.; Ye, Z. X.; Li, Y.; Lu, T. B. Hierarchical bimetallic electrocatalyst with amorphous SnO layer for highly efficient electroreduction of CO2. ChemCatChem 2021, 13, 4931–4936.

[94]

Yang, R.; Zeng, Z. P.; Peng, Z.; Xie, J. F.; Huang, Y. Y.; Wang, Y. B. Amorphous urchin-like copper@nanosilica hybrid for efficient CO2 electroreduction to C2+ products. J. Energy Chem. 2021, 61, 290–296.

[95]

Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth–nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 60, 4275–4281.

[96]

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

[97]

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. 2018, 57, 6073–6076.

[98]

Cheng, Y. H.; Li, D. M.; Shi, L.; Xiang, Z. H. Efficient unitary oxygen electrode for air-based flow batteries. Nano Energy 2018, 47, 361–367.

[99]

Yuan, G.; Wang, L.; Zhang, X. W.; Wang, Q. F. Self-supported Pt nanoflakes-doped amorphous Ni(OH)2 on Ni foam composite electrode for efficient and stable methanol oxidation. J. Colloid Interface Sci. 2019, 536, 189–195.

[100]

Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

[101]

Qin, Q.; Xie, J.; Dong, Q. Z.; Yu, G.; Chen, H. Surfactant-free fabrication of porous PdSn alloy networks by self-assembly as superior freestanding electrocatalysts for formic acid oxidation. New J. Chem. 2019, 43, 19242–19252.

[102]

Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J. Catal. 2019, 372, 299–310.

[103]

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

[104]

Zhao, W. L.; Zhu, G. L.; Zhao, W.; Lin, T. Q.; Xu, F. F.; Huang, F. Q. The hierarchical structure of cubic K0.5La0.5TiO3 layers and enhanced photocatalytic hydrogen evolution after surface acidification. Dalton Trans. 2015, 44, 18665–18670.

[105]

Wang, X. R.; Yang, K. X.; Ding, S. S.; Li, Y. Y.; Zhou, B. X.; Huang, G. F.; Hu, W. Y.; Huang, W. Q. 2D amorphous CoO incorporated g-C3N4 nanotubes for improved photocatalytic performance. Phys. Status Solidi-Res. 2021, 15, 2100254.

[106]

Dong, S.; Liu, W.; Liu, S.; Li, F.; Hou, J.; Hao, R.; Bai, X.; Zhao, H.; Liu, J.; Guo, L. Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction. Mater. Today Nano 2022, 17, 100157.

[107]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[108]

Kang, Y. Q.; Henzie, J.; Gu, H. J.; Na, J.; Fatehmulla, A.; Shamsan, B. S. A.; Aldhafiri, A. M.; Farooq, W. A.; Bando, Y.; Asahi, T. et al. Mesoporous metal-metalloid amorphous alloys: The first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method. Small 2020, 16, 1906707.

[109]

Kang, Y. Q.; Du, H. R.; Jiang, B.; Li, H.; Guo, Y. N.; Amin, M. A.; Sugahara, Y.; Asahi, T.; Li, H. X.; Yamauchi, Y. Microwave one-pot synthesis of CNT-supported amorphous Ni-P alloy nanoparticles with enhanced hydrogenation performance. J. Mater. Chem. A 2022, 10, 6560–6568.

[110]
Liang, J. Z.; Ge, Y. Y.; He, Z.; Yun, Q. B.; Liu, G. G.; Lu, S. Y.; Zhai, L.; Huang, B.; Zhang, H. Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Res., in press, https://doi.org/10.1007/s12274-021-4007-6.
[111]

Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

[112]

Nai, J. W.; Zhao, X. Y.; Yuan, H. D.; Tao, X. Y.; Guo, L. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res. 2021, 14, 2053–2066.

[113]

Nai, J. W.; Kang, J. X.; Guo, L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Sci. China Mater. 2015, 58, 44–59.

[114]

Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.

[115]

Fu, S. T.; Chen, J.; Wang, X. X.; He, Q.; Tong, S. F.; Wu, M. M. Free-standing crystalline@amorphous core–shell nanoarrays for efficient energy storage. Small 2020, 16, 2000040.

[116]

Li, H. X.; Xu, M.; Gao, C. H.; Zhang, W.; Zhang, Z. A.; Lai, Y. Q.; Jiao, L. F. Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries. Energy Storage Mater. 2020, 26, 325–333.

[117]

Li, H. X.; Jin, T.; Chen, X. B.; Lai, Y. Q.; Zhang, Z. A.; Bao, W. Z.; Jiao, L. F. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 2018, 8, 1801418.

[118]

Chen, J.; Fu, Y. L.; Sun, F.; Hu, Z. G.; Wang, X.; Zhang, T.; Zhang, F. S.; Wu, X. L.; Chen, H. S.; Cheng, G. A. et al. Oxygen vacancies and phase tuning of self-supported black TiO2−x nanotube arrays for enhanced sodium storage. Chem. Eng. J. 2020, 400, 125784.

[119]

Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.

[120]

Li, Q.; Xu, Y. X.; Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pang, H. Recent progress in some amorphous materials for supercapacitors. Small 2018, 14, 1800426.

[121]

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

[122]

Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

[123]

Hao, Z. Q.; Cao, J. P.; Dang, Y. L.; Wu, Y.; Zhao, X. Y.; Wei, X. Y. Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance. ACS Sustain. Chem. Eng. 2019, 7, 4037–4046.

[124]

Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3−δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397.

[125]

Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

[126]

Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Guo, H. H.; Feng, J. K.; Qian, Y. T. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020, 26, 223–233.

[127]

Fang, Y. J.; Zeng, Y. X.; Jin, Q.; Lu, X. F.; Luan, D. Y.; Zhang, X. T.; Lou, X. W. Nitrogen-doped amorphous Zn-carbon multichannel fibers for stable lithium metal anodes. Angew. Chem., Int. Ed. 2021, 60, 8515–8520.

[128]

Xue, P.; Sun, C.; Li, H. P.; Liang, J. J.; Lai, C. Superlithiophilic amorphous SiO2-TiO2 distributed into porous carbon skeleton enabling uniform lithium deposition for stable lithium metal batteries. Adv. Sci. 2019, 6, 1900943.

Nano Research
Pages 10597-10616
Cite this article:
Zhang B, Li Y, Bai H, et al. Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion. Nano Research, 2023, 16(7): 10597-10616. https://doi.org/10.1007/s12274-023-5571-8
Topics:

1125

Views

5

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 18 January 2023
Revised: 10 February 2023
Accepted: 10 February 2023
Published: 02 April 2023
© Tsinghua University Press 2023
Return