AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CH3I sensing using yttrium single atom-doped perovskite nanocrystals

Xiaowei Feng1Yuanlong Qin1Rui Sui2Guo Wang1Xinyu Zhang1Xinyu Liu1Jiajing Pei3Di Liu2( )Zhengbo Chen1( )
Department of Chemistry, Capital Normal University, Beijing 100048, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100029, China
Show Author Information

Graphical Abstract

We employ CsPbBr3 nanocrystals (NCs) as a matrix material to anchor Y single atoms (SAs) to synthesize Y SA anchored CsPbBr3 NCs (Y-SA/CsPbBr3 NCs). NCs from bare CsPbBr3 to Y-SA/CsPbBr3 undergo a cubic-to-orthorhombic phase transformation, and the latter significantly enhances the optical stability of perovskite, which was successfully applied to colorimetric sensing of CH3I.

Abstract

Nanocrystals (NCs) of cesium lead halide perovskites are optically unstable, which prevents their use in optical sensors. The combination of perovskite NCs and metal single atoms (SAs) may be a good solution to this issue. Unfortunately, depositing metal SAs on perovskite NCs remains a challenge due to relative weak metal–halide bonds. Herein, we present that, via a photo assisted method using cesium lead halide perovskite NCs as host material to anchor Y single atoms, we successfully synthesize Y SA anchored CsPbBr3 NCs (Y-SA/CsPbBr3 NCs) with outstanding fluorescence stability through the formation of two Y–O bonds and two Y–Br bonds. In comparison to bare CsPbBr3 NCs, Y-SA/CsPbBr3 NCs possess more stable optical characteristics. The as-synthesized Y-SA/CsPbBr3 NCs can be employed as a colorimetric platform to perform rapid CH3I sensing. Detection limit of 0.044 ppm is exhibited in this approach with excellent anti-interference performance. The Y-SA/CsPbBr3 NCs-based system has been applied to the detection of CH3I in sweet potato samples with satisfying results.

Electronic Supplementary Material

Download File(s)
12274_2023_5591_MOESM1_ESM.pdf (3.4 MB)

References

[1]

Tang, P. X.; Nguyen, N. T. H.; Lo, J. G.; Sun, G. Colorimetric detection of carcinogenic alkylating fumigants on a nylon 6 nanofibrous membrane. Part II: Self-catalysis of 2-diethylaminoethyl-modified sensor matrix for improvement of sensitivity. ACS Appl. Mater. Interfaces 2019, 11, 13632–13641.

[2]

Ashworth, D. J.; Yates, S. R.; Luo, L. F.; Xuan, R. C. Phase partitioning, retention kinetics, and leaching of fumigant methyl iodide in agricultural soils. Sci. Total Environ. 2012, 432, 122–127.

[3]

Tang, P. X.; Leung, H. T.; Sun, G. Colorimetric detection of carcinogenic alkylating fumigants on nylon-6 nanofibrous membrane. Part I: Investigation of 4-(p-nitrobenzyl) pyridine as a “new” sensing agent with ultrahigh sensitivity. Anal. Chem. 2018, 90, 14593–14601.

[4]

Guthman, J.; Brown, S. Midas’ not-so-golden touch: On the demise of methyl iodide as a soil fumigant in California. J. Environ. Policy Plan. 2016, 18, 324–341.

[5]

Mekic, M.; Temime-Roussel, B.; Monod, A.; Strekowski, R. S. Quantification of gas phase methyl iodide using H3O+ as the reagent ion in the PTR-MS technique. Int. J. Mass Spectrom. 2018, 424, 10–15.

[6]

Kim, T.; Kim, M.; Kim, D.; Jung, S. H.; Yeon, J. W. Concentration determination of volatile molecular iodine and methyl iodide. Bull. Korean Chem. Soc. 2018, 39, 824–828.

[7]

Das, S.; Sharma, P.; Badani, P. M.; Vatsa, R. K. Ionisation of methyl iodide clusters using nanosecond laser pulses: Detection of multiply charged positive ions, negative ions and energetic electrons. RSC Adv. 2015, 5, 8887–8894.

[8]

R’Mili, B.; Temime-Roussel, B.; Monod, A.; Wortham, H.; Strekowski, R. S. Quantification of the gas phase methyl iodide using O2+ as the reagent ion in the PTR-ToF-MS technique. Int. J. Mass Spectrom. 2018, 431, 43–49.

[9]

Sadiek, I.; Shi, Q.; Wallace, D. W. R.; Friedrichs, G. Quantitative mid-infrared cavity ringdown detection of methyl iodide for monitoring applications. Anal. Chem. 2017, 89, 8445–8452.

[10]

Zheng, H. N.; Hou, S. J.; Xin, C. G.; Wu, Q. Q.; Jiang, F.; Tan, Z. B.; Zhou, X.; Lin, L. C.; He, W. X.; Li, Q. M. et al. Room-temperature quantum interference in single perovskite quantum dot junctions. Nat. Commun. 2019, 10, 5458.

[11]

Lv, X.; Chen, G. Y.; Zhu, X.; An, J. K.; Bao, J. C.; Xu, X. X. Ternary phase diagram of all-inorganic perovskite CsPbClaBrbI3−ab nanocrystals. Nano Res. 2022, 15, 7590–7596.

[12]

Shi, L. F.; Meng, L. H.; Jiang, F.; Ge, Y.; Li, F.; Wu, X. G.; Zhong, H. Z. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 2019, 29, 1903648.

[13]

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

[14]

Hasan, M.; Moyen, E.; Saha, J. K.; Islam, M.; Ali, A.; Jang, J. Solution processed high performance perovskite quantum dots/ZnO phototransistors. Nano Res. 2022, 15, 3660–3666.

[15]

Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

[16]

Wang, S. H.; Gu, Z. K.; Zhao, R. D.; Zhang, T.; Lou, Y. J.; Guo, L. T.; Su, M.; Li, L. H.; Zhang, Y. Q.; Song, Y. L. A general method for growth of perovskite single-crystal arrays for high performance photodetectors. Nano Res. 2022, 15, 6568–6573.

[17]

Gandini, M.; Villa, I.; Beretta, M.; Gotti, C.; Imran, M.; Carulli, F.; Fantuzzi, E.; Sassi, M.; Zaffalon, M.; Brofferio, C. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020, 15, 462–468.

[18]

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

[19]

Zhao, P.; Su, J.; Guo, Y. J.; Wang, L.; Lin, Z. H.; Hao, Y.; Ouyang, X. P.; Chang, J. J. Cs2TiI6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Res. 2022, 15, 2697–2705.

[20]

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

[21]

Lai, Z. X.; Meng, Y.; Wang, F.; Bu, X. M.; Wang, W.; Xie, P. S.; Wang, W. J.; Liu, C. T.; Yip, S. P.; Ho, J. C. Direct drop-casting synthesis of all-inorganic lead and lead-free halide perovskite microcrystals for high-performance photodetectors. Nano Res. 2022, 15, 3621–3627.

[22]

Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

[23]

Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500963.

[24]

Wang, X. C.; Bao, Z.; Chang, Y. C.; Liu, R. S. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes. ACS Energy Lett. 2020, 5, 3374–3396.

[25]

Ravi, V. K.; Mondal, B.; Nawale, V. V.; Nag, A. Don’t let the lead out: New material chemistry approaches for sustainable lead halide perovskite solar cells. ACS Omega 2020, 5, 29631–29641.

[26]

Lou, S. Q.; Xuan, T. T.; Wang, J. (Invited) stability: A desiderated problem for the lead halide perovskites. Opt. Mater. X 2019, 1, 100023.

[27]

Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.

[28]

Wang, Y.; Li, X. M.; Sreejith, S.; Cao, F.; Wang, Z.; Stuparu, M. C.; Zeng, H. B.; Sun, H. D. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv. Mater. 2016, 28, 10637–10643.

[29]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[30]

Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 2016, 16, 3563–3570.

[31]

Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134–8138.

[32]

Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J. Am. Chem. Soc. 2018, 140, 406–412.

[33]

Ratnesh, R. K.; Mehata, M. S. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Spectrochim. Acta Part A 2017, 179, 201–210.

[34]

Saikia, D.; Chakravarty, S.; Sarma, N. S.; Bhattacharjee, S.; Datta, P.; Adhikary, N. C. Aqueous synthesis of highly stable CdTe/ZnS core/shell quantum dots for bioimaging. Luminescence 2017, 32, 401–408.

[35]

Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 2010, 22, 1182–1195.

[36]

Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

[37]

Feng, X. W.; Zhang, X. Y.; Huang, J.; Wu, R. F.; Leng, Y. M.; Chen, Z. B. CsPbBr3 and CsPbBr3/SiO2 nanocrystals as a fluorescence sensing platform for high-throughput identification of multiple thiophene sulfides. Anal. Chem. 2022, 94, 5946–5952.

[38]

Balakrishnan, S. K.; Kamat, P. V. Au-CsPbBr3 hybrid architecture: Anchoring gold nanoparticles on cubic perovskite nanocrystals. ACS Energy Lett. 2017, 2, 88–93.

[39]

Roman, B. J.; Otto, J.; Galik, C.; Downing, R.; Sheldon, M. Au exchange or Au deposition: Dual reaction pathways in Au-CsPbBr3 heterostructure nanoparticles. Nano Lett. 2017, 17, 5561–5566.

[40]

Huang, X. Y.; Li, H. B.; Zhang, C. F.; Tan, S. J.; Chen, Z. Z.; Chen, L.; Lu, Z. D.; Wang, X. Y.; Xiao, M. Efficient plasmon-hot electron conversion in Ag-CsPbBr3 hybrid nanocrystals. Nat. Commun. 2019, 10, 1163.

[41]

Li, P. L.; Yang, D.; Zhong, Q. X.; Zhang, Y.; Chen, M.; Jiang, S.; Chen, J. X.; Cao, M. H.; Zhang, Q.; Yin, Y. D. Photoreversible luminescence switching of CsPbI3 nanocrystals sensitized by photochromic AgI nanocrystals. Nanoscale 2019, 11, 3193–3199.

[42]

Hu, H. C.; Guan, W. H.; Xu, Y. F.; Wang, X. C.; Wu, L. Z.; Chen, M.; Zhong, Q. X.; Xu, Y.; Li, Y. Y.; Sham, T. K. et al. Construction of single-atom platinum catalysts enabled by CsPbBr3 nanocrystals. ACS Nano 2021, 15, 13129–13139.

[43]

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

[44]

Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

[45]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

Nano Research
Pages 10429-10435
Cite this article:
Feng X, Qin Y, Sui R, et al. CH3I sensing using yttrium single atom-doped perovskite nanocrystals. Nano Research, 2023, 16(7): 10429-10435. https://doi.org/10.1007/s12274-023-5591-4
Topics:

734

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 03 January 2023
Revised: 10 February 2023
Accepted: 19 February 2023
Published: 30 March 2023
© Tsinghua University Press 2023
Return