AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Solid electrolyte interphase on anodes in rechargeable lithium batteries

Lihua Chu1Yuxin Shi1Ze Li1Changxu Sun1Hao Yan1Jing Ma1Xuchen Li1Chaofeng Liu2Jianan Gu1Kai Liu1Lehao Liu1Bing Jiang1Yingfeng Li1Meicheng Li1( )
School of New Energy, North China Electric Power University, Beijing 102206, China
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Show Author Information

Graphical Abstract

The basic science and latest progress of the solid electrolyte interphase (SEI) studies on the anode surface are reviewed. The formation mechanism, materials, and electrolytes are discussed and summarized in detail.

Abstract

Highly safe and efficient rechargeable lithium batteries have become an indispensable component of the intelligent society powering smart electronics and electric vehicles. This review summarizes the formation principle, chemical compositions, and theoretical models of the solid electrolyte interphase (SEI) on the anode in the lithium battery, involving the functions and influences of the electroactive materials. The discrepancies of the SEI on different kinds of anode materials, as well as the choice and design of the electrolytes are detailedly clarified. Furthermore, the design strategies to obtain a stable and efficient SEI are outlined and discussed. Last but not least, the challenges and perspectives of artificial SEI technology are briefly proposed for the development of high-efficiency batteries in practice.

References

[1]

Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

[2]

Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

[3]

Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

[4]

Canepa, P.; Gautam, G. S.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341.

[5]

Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

[6]

Meda, U. S.; Lal, L.; M, S.; Garg, P. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances. J. Energy Storage 2022, 47, 103564.

[7]
Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.
[8]

Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

[9]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[10]

Zhang, H.; Qi, Y. B. Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy Fuels 2022, 6, 954–970.

[11]
Haruta, M.; Okubo, T.; Masuo, Y.; Yoshida, S.; Tomita, A.; Takenaka, T.; Doi, T.; Inaba, M. Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim. Acta 2017, 224, 186–193.
[12]

Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

[13]

Soto, F. A.; De La Hoz, J. M. M.; Seminario, J. M.; Balbuena, P. B. Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr. Opin. Chem. Eng. 2016, 13, 179–185.

[14]

Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394.

[15]

Zheng, Y.; Balbuena, P. B. Localized high concentration electrolytes decomposition under electron-rich environments. J. Chem. Phys. 2021, 154, 104702.

[16]

Zhang, Y. N.; Jiang, F. L.; Bai, F.; Jiang, H.; Zhang, T. Sacrificial co-solvent electrolyte to construct a stable solid electrolyte interphase in lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2022, 14, 10327–10336.

[17]

Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 2018, 4, 15.

[18]

Wang, J.; Yang, J.; Xiao, Q. B.; Zhang, J.; Li, T.; Jia, L. J.; Wang, Z. L.; Cheng, S.; Li, L. G.; Liu, M. N. et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 2021, 31, 2007434.

[19]

Peled, E.; Menkin, S. Review—SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

[20]

Lang, S. Y.; Shen, Z. Z.; Hu, X. C.; Shi, Y.; Guo, Y. G.; Jia, F. F.; Wang, F. Y.; Wen, R.; Wan, L. J. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy 2020, 75, 104967.

[21]

Dupré, N.; Moreau, P.; De Vito, E.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Bayle-Guillemaud, P.; Guyomard, D. Multiprobe study of the solid electrolyte interphase on silicon-based electrodes in full-cell configuration. Chem. Mater. 2016, 28, 2557–2572.

[22]

Rikka, V. R.; Sahu, S. R.; Chatterjee, A.; Gopalan, R.; Sundararajan, G.; Prakash, R. Composition-dependent long-term stability of mosaic solid-electrolyte interface for long-life lithium-ion battery. Batteries Supercaps 2021, 4, 1720–1730.

[23]

Dey, A. N.; Sullivan, B. P. The electrochemical decomposition of propylene carbonate on graphite. J. Electrochem. Soc. 1970, 117, 222–224.

[24]

Peled, E. Film forming reaction at the lithium/electrolyte interface. J. Power Sources 1983, 9, 253–266.

[25]

Nazri, G.; Muller, R. H. Composition of surface layers on Li electrodes in PC, LiClO4 of very low water content. J. Electrochem. Soc. 1985, 132, 2050–2054.

[26]

Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 1987, 134, 1611–1620.

[27]

Fong, R.; Von Sacken, U.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990, 137, 2009–2013.

[28]

Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. I. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J. Electrochem. Soc. 1995, 142, 340–347.

[29]

Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

[30]
Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 1999, 81–82, 95–111.
[31]

Christensen, J.; Newman, J. A mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 2004, 151, A1977–A1988.

[32]

Edström, K.; Herstedt, M.; Abraham, D. P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources 2006, 153, 380–384.

[33]

Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G. Jr.; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

[34]

Zheng, J. Y.; Zheng, H.; Wang, R.; Ben, L. B.; Lu, W.; Chen, L. W.; Chen, L. Q.; Li, H. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 13229–13238.

[35]

Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

[36]

Hou, C.; Han, J. H.; Liu, P.; Yang, C. C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. W. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy. Adv. Energy Mater. 2019, 9, 1902675.

[37]

Kanamura, K.; Shiraishi, S.; Takehara, Z. I. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J. Electrochem. Soc. 1996, 143, 2187–2197.

[38]

Zheng, J. H.; Ju, Z. J.; Zhang, B. L.; Nai, J. W.; Liu, T. F.; Liu, Y. J.; Xie, Q. F.; Zhang, W. K.; Wang, Y.; Tao, X. Y. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase. J. Mater. Chem. A 2021, 9, 10251–10259.

[39]

Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. et al. Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672.

[40]

Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

[41]

Huang, W.; Attia, P. M.; Wang, H. S.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z. W.; Boyle, D. T.; Li, Y. Z.; Bazant, M. Z. et al. Evolution of the solid–electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 2019, 19, 5140–5148.

[42]

Wu, H. P.; Jia, H.; Wang, C. M.; Zhang, J. G.; Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 2021, 11, 2003092.

[43]

Zhou, Y. F.; Su, M.; Yu, X. F.; Zhang, Y. Y.; Wang, J. G.; Ren, X. D.; Cao, R. G.; Xu, W.; Baer, D. R.; Du, Y. G. et al. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 2020, 15, 224–230.

[44]

Cheng, X. B.; Yan, C.; Zhang, X. Q.; Liu, H.; Zhang, Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 2018, 3, 1564–1570.

[45]

Sun, S. Y.; Yao, N.; Jin, C. B.; Xie, J.; Li, X. Y.; Zhou, M. Y.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase. Angew. Chem., Int. Ed. 2022, 61, e202208743.

[46]

Xu, Y. B.; He, Y.; Wu, H. P.; Xu, W.; Wang, C. M. Atomic structure of electrochemically deposited lithium metal and its solid electrolyte interphases revealed by cryo-electron microscopy. Microsc. Microanal. 2019, 25, 2220–2221.

[47]

Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels 2020, 4, 5387–5416.

[48]

Bhandari, A.; Peng, C.; Dziedzic, J.; Owen, J. R.; Kramer, D.; Skylaris, C. K. Li nucleation on the graphite anode under potential control in Li-ion batteries. J. Mater. Chem. A 2022, 10, 11426–11436.

[49]

Ehteshami, N.; Ibing, L.; Stolz, L.; Winter, M.; Paillard, E. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes. J. Power Sources 2020, 451, 227804.

[50]

Heng, S.; Shan, X. J.; Wang, W.; Wang, Y.; Zhu, G. B.; Qu, Q. T.; Zheng, H. H. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon 2020, 159, 390–400.

[51]

Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281.

[52]

Zhang, H. L.; Liu, S. H.; Li, F.; Bai, S.; Liu, C.; Tan, J.; Cheng, H. M. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 2006, 44, 2212–2218.

[53]

Yu, P.; Ritter, J. A.; White, R. E.; Popov, B. N. Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries I. Initial irreversible capacity study. J. Electrochem. Soc. 2000, 147, 1280–1285.

[54]

Kottegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Enhancement of rate capability in graphite anode by surface modification with zirconia. Electrochem. Solid-State Lett. 2002, 5, A275–A278.

[55]

Seo, J.; Hyun, S.; Moon, J.; Lee, J. Y.; Kim, C. High performance of a polydopamine-coated graphite anode with a stable SEI layer. ACS Appl. Energy Mater. 2022, 5, 5610–5616.

[56]

Song, D.; Jo, M. R.; Lee, G. H.; Song, J.; Choi, N. S.; Kang, Y. M. Bifunctional Li4Ti5O12 coating layer for the enhanced kinetics and stability of carbon anode for lithium rechargeable batteries. J. Alloys Compd. 2014, 615, 220–226.

[57]

Nasara, R. N.; Ma, W.; Tsujimoto, S.; Inoue, Y.; Yokoyama, Y.; Kondo, Y.; Miyazaki, K.; Miyahara, Y.; Fukutsuka, T.; Lin, S. K. et al. Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries. Electrochim. Acta 2021, 379, 138175.

[58]

Song, M. S.; Kim, R. H.; Baek, S. W.; Lee, K. S.; Park, K.; Benayad, A. Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte. J. Mater. Chem. A 2014, 2, 631–636.

[59]

Chen, Y.; Pan, H. D.; Lin, C.; Li, J. X.; Cai, R. S.; Haigh, S. J.; Zhao, G. Y.; Zhang, J. M.; Lin, Y. B.; Kolosov, O. V. et al. Controlling interfacial reduction kinetics and suppressing electrochemical oscillations in Li4Ti5O12 thin-film anodes. Adv. Funct. Mater. 2021, 31, 2105354.

[60]

Yi, T. F.; Shu, J.; Zhu, Y. R.; Zhu, X. D.; Yue, C. B.; Zhou, A. N.; Zhu, R. S. High-performance Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery. Electrochim. Acta 2009, 54, 7464–7470.

[61]

Yi, T. F.; Shu, J.; Zhu, Y. R.; Zhu, X. D.; Zhu, R. S.; Zhou, A. N. Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V. J. Power Sources 2010, 195, 285–288.

[62]

He, Y. B.; Ning, F.; Li, B. H.; Song, Q. S.; Lv, W.; Du, H. D.; Zhai, D. Y.; Su, F. Y.; Yang, Q. H.; Kang, F. Y. Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J. Power Sources 2012, 202, 253–261.

[63]

Du, A. M.; Li, H.; Chen, X. W.; Han, Y. Y.; Zhu, Z. P.; Chu, C. C. Recent research progress of silicon-based anode materials for lithium-ion batteries. ChemistrySelect 2022, 7, e202201269.

[64]

Wang, W. L.; Wang, Y.; Yuan, L. X.; You, C. L.; Wu, J. W.; Liu, L. L.; Ye, J. L.; Wu, Y. L.; Fu, L. J. Recent advances in modification strategies of silicon-based lithium-ion batteries. Nano Res. 2023, 16, 3781–3803.

[65]

Corsi, J. S.; Welborn, S. S.; Stach, E. A.; Detsi, E. Insights into the degradation mechanism of nanoporous alloy-type Li-ion battery anodes. ACS Energy Lett. 2021, 6, 1749–1756.

[66]
Haruta, M.; Kijima, Y.; Hioki, R.; Doi, T.; Inaba, M. Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: Visualization of a solid electrolyte interphase using in situ AFM. Nanoscale 2018, 10, 17257–17264.
[67]

Yang, Y.; Wang, Z. X.; Zhou, R.; Guo, H. J.; Li, X. H. Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Mater. Lett. 2016, 184, 65–68.

[68]

Li, J. C.; Xiao, X. C.; Cheng, Y. T.; Verbrugge, M. W. Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries. J. Phys. Chem. Lett. 2013, 4, 3387–3391.

[69]

Jiménez, A. R.; Nölle, R.; Wagner, R.; Hüsker, J.; Kolek, M.; Schmuch, R.; Winter, M.; Placke, T. A step towards understanding the beneficial influence of a LIPON-based artificial SEI on silicon thin film anodes in lithium-ion batteries. Nanoscale 2018, 10, 2128–2137.

[70]

Li, J. C.; Dudney, N. J.; Nanda, J.; Liang, C. D. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10083–10088.

[71]

Jiang, C. L.; Xiang, L.; Miao, S. J.; Shi, L.; Xie, D. H.; Yan, J. X.; Zheng, Z. J.; Zhang, X. M.; Tang, Y. B. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 2020, 32, 1908470.

[72]

Wang, M. S.; Wang, G. L.; Wang, S.; Zhang, J.; Wang, J.; Zhong, W.; Tang, F.; Yang, Z. L.; Zheng, J. M.; Li, X. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 895–903.

[73]

Wu, H.; Zheng, G. Y.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904–909.

[74]

Chen, S. Q.; Shen, L. F.; Van Aken, P. A.; Maier, J.; Yu, Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 2017, 29, 1605650.

[75]

Jin, Y. T.; Kneusels, N. J. H.; Marbella, L. E.; Castillo-Martínez, E.; Magusin, P. C. M. M.; Weatherup, R. S.; Jónsson, E.; Liu, T.; Paul, S.; Grey, C. P. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 2018, 140, 9854–9867.

[76]

Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

[77]

Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146–2172.

[78]

Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

[79]

Malini, R.; Uma, U.; Sheela, T.; Ganesan, M.; Renganathan, N. G. Conversion reactions: A new pathway to realise energy in lithium-ion battery—Review. Ionics 2009, 15, 301–307.

[80]

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

[81]

Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.

[82]

Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.

[83]

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

[84]

Wang, X. H.; Li, X. W.; Sun, X. L.; Li, F.; Liu, Q. M.; Wang, Q.; He, D. Y. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem. 2011, 21, 3571–3573.

[85]

Wang, X. H.; Yang, Z. B.; Sun, X. L.; Li, X. W.; Wang, D. S.; Wang, P.; He, D. Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988–9990.

[86]

Wang, S. Q.; Zhang, J. Y.; Chen, C. H. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scr. Mater. 2007, 57, 337–340.

[87]

Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 2009, 21, 803–807.

[88]

Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.

[89]

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

[90]

Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

[91]

Zeng, Z. P.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Wang, J.; Xia, Q. Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries. J. Power Sources 2015, 274, 1091–1099.

[92]

Fang, J. B.; Ren, Q.; Liu, C.; Chen, J. A.; Wu, D.; Li, A. D. Realizing the enhanced cyclability of a cactus-like NiCo2O4 nanocrystal anode fabricated by molecular layer deposition. Dalton Trans. 2021, 50, 511–519.

[93]

Guo, A. P.; Zhao, J. K.; Yang, K. M.; Xie, M. Z.; Wang, Z. L.; Yang, X. J. Design and synthesis of NiCo-NiCoO2@C composites with improved lithium storage performance as the anode materials. J. Colloid Interface Sci. 2023, 631, 112–121.

[94]

Feng, J. W.; Hu, S. G.; Han, B.; Xiao, Y. L.; Deng, Y. H.; Wang, C. Y. Research progress of electrolyte optimization for lithium metal batteries. Energy Storage Sci. Technol. 2020, 9, 1629–1640.

[95]

Lucero, N.; Vilcarino, D.; Datta, D.; Zhao, M. Q. The roles of MXenes in developing advanced lithium metal anodes. J. Energy Chem. 2022, 69, 132–149.

[96]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[97]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[98]

Li, W. J.; Zheng, H.; Chu, G.; Luo, F.; Zheng, J. Y.; Xiao, D. D.; Li, X.; Gu, L.; Li, H.; Wei, X. L. et al. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: A top view investigation. Faraday Discuss. 2014, 176, 109–124.

[99]

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

[100]

Bai, M. H.; Xie, K. Y.; Hong, B.; Yuan, K.; Li, Z. H.; Huang, Z. M.; Shen, C.; Lai, Y. Q. An artificial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium. Solid State Ion. 2019, 333, 101–104.

[101]
Cao, W. Z.; Chen, W. M.; Lu, M.; Zhang, C.; Tian, D.; Wang, L.; Yu, F. Q. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries. J. Energy Chem. 2023, 76, 648–656.
[102]

Wang, L. P.; Zhang, L.; Wang, Q. J.; Li, W. J.; Wu, B.; Jia, W. S.; Wang, Y. H.; Li, J. Z.; Li, H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Stor. Mater. 2018, 10, 16–23.

[103]

Nan, Y.; Li, S. M.; Zhu, M. Q.; Li, B.; Yang, S. B. Endowing the lithium metal surface with self-healing property via an in situ gas–solid reaction for high-performance lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 28878–28884.

[104]

Umeda, G. A.; Menke, E.; Richard, M.; Stamm, K. L.; Wudl, F.; Dunn, B. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 2011, 21, 1593–1599.

[105]

Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

[106]

Feng, Y. Y.; Zhang, C. F.; Jiao, X. X.; Zhou, Z. X.; Song, J. X. Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework. Energy Storage Mater. 2020, 25, 172–179.

[107]

Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

[108]

Meng, Q. Q.; Zhang, H. M.; Liu, Y.; Huang, S. B.; Zhou, T. Z.; Yang, X. F.; Wang, B. Y.; Zhang, W. F.; Ming, H.; Xiang, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 2019, 12, 2919–2924.

[109]

Yan, C.; Li, H. R.; Chen, X.; Zhang, X. Q.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Zhang, Q. Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429.

[110]

Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Wu, F.; Chaudhary, A.; Ghimire, N.; Zhou, B.; Zhang, W. H. et al. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv. Energy Mater. 2019, 9, 1901486.

[111]

Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2018, 2, 2167–2177.

[112]
Ishikawa, M.; Morita, M. Current issues of metallic lithium anode. In Lithium Batteries: Science and Technology. Nazri, G. A.; Pistoia, G. , Eds.; Springer: Boston, 2003; pp 297–312.
[113]

Guo, J.; Wen, Z. Y.; Wu, M. F.; Jin, J.; Liu, Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 2015, 51, 59–63.

[114]

Heiskanen, S. K.; Kim, J.; Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 2019, 3, 2322–2333.

[115]
Yang, Z.; Jiang, M. X.; Cui, C.; Wang, Y. X.; Qin, J. W.; Wang, J.; Wang, Y. X. J.; Mao, B. G.; Cao, M. H. In-situ cross-linking strategy for stabilizing the LEDC of the solid-electrolyte interphase in lithium-ion batteries. Nano Energy 2023, 105, 107993.
[116]
Peled, E.; Tow, D. B.; Merson, A.; Gladkich, A.; Burstein, L.; Golodnitsky, D. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J. Power Sources 2001, 97–98, 52–57.
[117]

Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K. A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Mater. Sci. Eng. R Rep. 2018, 134, 1–21.

[118]

Kondou, S.; Watanabe, Y.; Dokko, K.; Watanabe, M.; Ueno, K. Electrochemical pretreatment of solid-electrolyte interphase formation for enhanced Li4Ti5O12 anode performance in a molten Li-Ca binary salt hydrate electrolyte. ChemElectroChem 2022, 9, e202200061.

[119]

Liu, S.; Zhang, Q. K.; Wang, X. S.; Xu, M. Q.; Li, W. S.; Lucht, B. L. LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Appl. Mater. Interfaces 2020, 12, 33719–33728.

[120]

Kuai, D. C.; Balbuena, P. B. Inorganic solid electrolyte interphase engineering rationales inspired by hexafluorophosphate decomposition mechanisms. J. Phys. Chem. C 2023, 127, 1744–1751.

[121]

Yang, C. R.; Wang, Y. Y.; Wan, C. C. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. J. Power Sources 1998, 72, 66–70.

[122]

Schmitz, R. W.; Murmann, P.; Schmitz, R.; Müller, R.; Krämer, L.; Kasnatscheew, J.; Isken, P.; Niehoff, P.; Nowak, S.; Röschenthaler, G. V. et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog. Solid State Chem. 2014, 42, 65–84.

[123]

Shen, C.; Wang, S. W.; Jin, Y.; Han, W. Q. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 25441–25447.

[124]

Mosallanejad, B.; Malek, S. S.; Ershadi, M.; Sharifi, H.; Daryakenari, A. A.; Ajdari, F. B.; Ramakrishna, S. Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries. J. Electroanal. Chem. 2022, 909, 116126.

[125]

Qian, J. F.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y. H.; Zhang, J. G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 2015, 15, 135–144.

[126]

Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014, 14, 6889–6896.

[127]

Li, S.; Dai, H. L.; Li, Y. H.; Lai, C.; Wang, J. L.; Huo, F. W.; Wang, C. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Stor. Mater. 2019, 18, 222–228.

[128]

Ma, Y. L.; Zhou, Z. X.; Li, C. J.; Wang, L.; Wang, Y.; Cheng, X. Q.; Zuo, P. J.; Du, C. Y.; Huo, H.; Gao, Y. Z. et al. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Stor. Mater. 2018, 11, 197–204.

[129]

Wu, L. N.; Peng, J.; Sun, Y. K.; Han, F. M.; Wen, Y. F.; Shi, C. G.; Fan, J. J.; Huang, L.; Li, J. T.; Sun, S. G. High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 18504–18510.

[130]

Tan, J.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046.

[131]

Zhang, H. C.; Luo, J. R.; Qi, M.; Lin, S. R.; Dong, Q.; Li, H. Y.; Dulock, N.; Povinelli, C.; Wong, N.; Fan, W. et al. Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions. Angew. Chem., Int. Ed. 2021, 60, 19183–19190.

[132]

Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Hu, C. J.; Lu, J.; Liu, W.; Sun, X. M.; Qiu, J. Y.; Zhou, H. H. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 2019, 31, 1903248.

[133]

Wang, H. P.; He, J.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Wen, J.; Chen, Y. N.; Feng, Y. Z.; Ma, J. M. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2002578.

[134]

Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.

[135]

Qi, S. H.; Liu, J. D.; He, J.; Wang, H. P.; Wu, M. G.; Wu, D. X.; Huang, J. D.; Li, F.; Li, X.; Ren, Y. R. et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering. J. Energy Chem. 2021, 63, 270–277.

[136]

Beheshti, S. H.; Javanbakht, M.; Omidvar, H.; Hosen, S.; Hubin, A.; Van Mierlo, J.; Berecibar, M. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives. iScience 2022, 25, 103862.

[137]

Chen, G. Y.; Zhuang, G. V.; Richardson, T. J.; Liu, G.; Ross, P. N. Jr. Anodic polymerization of vinyl ethylene carbonate in Li-ion battery electrolyte. Electrochem. Solid-State Lett. 2005, 8, A344–A347.

[138]

Ota, H.; Sakata, Y.; Otake, Y.; Shima, K.; Ue, M.; Yamaki, J. I. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J. Electrochem. Soc. 2004, 151, A1778–A1788.

[139]

Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.

[140]

Yang, Y.; Xiong, J.; Lai, S. B.; Zhou, R.; Zhao, M.; Geng, H. B.; Zhang, Y. F.; Fang, Y. X.; Li, C. C.; Zhao, J. B. Vinyl ethylene carbonate as an effective SEI-forming additive in carbonate-based electrolyte for lithium-metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 6118–6125.

[141]

Lee, J. T.; Lin, Y. W.; Jan, Y. S. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes. J. Power Sources 2004, 132, 244–248.

[142]

Liang, Y. R.; Xiao, Y.; Yan, C.; Xu, R.; Ding, J. F.; Liang, J.; Peng, H. J.; Yuan, H.; Huang, J. Q. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. J. Energy Chem. 2020, 48, 203–207.

[143]

Abe, K.; Yoshitake, H.; Kitakura, T.; Hattori, T.; Wang, H. Y.; Yoshio, M. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim. Acta 2004, 49, 4613–4622.

[144]
Santner, H. J.; Möller, K. C.; Ivančo, J.; Ramsey, M. G.; Netzer, F. P.; Yamaguchi, S.; Besenhard, J. O.; Winter, M. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. J. Power Sources 2003, 119–121, 368–372.
[145]

Komaba, S.; Itabashi, T.; Ohtsuka, T.; Groult, H.; Kumagai, N.; Kaplan, B.; Yashiro, H. Impact of 2-vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C/LiMn2O4 Li-ion cells. J. Electrochem. Soc. 2005, 152, A937–A946.

[146]

Ufheil, J.; Baertsch, M. C.; Würsig, A.; Novák, P. Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim. Acta 2005, 50, 1733–1738.

[147]

Ein-Eli, Y.; Thomas, S. R.; Koch, V. R. New electrolyte system for Li-ion battery. J. Electrochem. Soc. 1996, 143, L195–L197.

[148]

Ein-Eli, Y. Dithiocarbonic anhydride (CS2)—A new additive in Li-ion battery electrolytes. J. Electroanal. Chem. 2002, 531, 95–99.

[149]

Wagner, M. W.; Liebenow, C.; Besenhard, J. O. Effect of polysulfide-containing electrolyte on the film formation of the negative electrode. J. Power Sources 1997, 68, 328–332.

[150]

Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem. Soc. 1999, 146, 470–472.

[151]

Wrodnigg, G. H.; Wrodnigg, T. M.; Besenhard, J. O.; Winter, M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem. Commun. 1999, 1, 148–150.

[152]
Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. Cyclic and acyclic sulfites: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes?. J. Power Sources 2001, 97–98, 592–594.
[153]

Lau, J.; DeBlock, R. H.; Butts, D. M.; Ashby, D. S.; Choi, C. S.; Dunn, B. S. Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 2018, 8, 1800933.

[154]

Besenhard, J. O.; Wagner, M. W.; Winter, M.; Jannakoudakis, A. D.; Jannakoudakis, P. D.; Theodoridou, E. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes. J. Power Sources 1993, 44, 413–420.

[155]
Gan, H.; Takeuchi, E. S. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells. U.S. Patent 6,495,285, December 17, 2002.
[156]

Shu, Z. X.; McMillan, R. S.; Murray, J. J.; Davidson, I. J. Use of chloroethylene carbonate as an electrolyte solvent for a lithium ion battery containing a graphitic anode. J. Electrochem. Soc. 1995, 142, L161–L162.

[157]
McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81–82, 20–26.
[158]

Simon, B.; Boeuve, J. P.; Broussely, M. Electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents. J. Power Sources 1993, 43, 65–74.

[159]

Osaka, T.; Momma, T.; Matsumoto, Y.; Uchida, Y. Effect of carbon dioxide on lithium anode cycleability with various substrates. J. Power Sources 1997, 68, 497–500.

[160]

Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148, 405–416.

[161]

Gan, H.; Takeuchi, E. S. Lithium electrodes with and without CO2 treatment: Electrochemical behavior and effect on high rate lithium battery performance. J. Power Sources 1996, 62, 45–50.

[162]

Lee, J. T.; Wu, M. S.; Wang, F. M.; Lin, Y. W.; Bai, M. Y.; Chiang, P. C. J. Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A1837–A1843.

[163]

Wang, C. X.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H. Electrochemical behaviour of a graphite electrode in propylene carbonate and 1, 3-benzodioxol-2-one based electrolyte system. J. Power Sources 1998, 74, 142–145.

[164]
Heider, U.; Schmidt, M.; Amann, A.; Niemann, M.; Kuehner, A. Use of additives in electrolytes for electrochemical cells. EP Patent 1,035,612, October 05, 2005.
Nano Research
Pages 11589-11603
Cite this article:
Chu L, Shi Y, Li Z, et al. Solid electrolyte interphase on anodes in rechargeable lithium batteries. Nano Research, 2023, 16(9): 11589-11603. https://doi.org/10.1007/s12274-023-5702-2
Topics:
Part of a topical collection:

1241

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 31 January 2023
Revised: 13 March 2023
Accepted: 30 March 2023
Published: 03 May 2023
© Tsinghua University Press 2023
Return