Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn4P3 nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn4P3 nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn4P3 nanosheets display an exceptional initial capacity of 1088 mAh·g−1, nearing the theoretical value of 1230 mAh·g−1. Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn4P3, marking a significant advancement in developing high-performance energy storage systems.
- Article type
- Year
- Co-author
The earth-abundant and robust aluminum ferrite, AlFeO3 (AFO), is mainly studied in the context of ferroelectrics. Herein, we demonstrate that AFO can be used as a stable solar absorber in photoelectrochemical cells for solar water splitting, exhibiting attractive performance. This is the first report on the photoelectrochemical activity of AFO. AFO thin-film photoelectrodes prepared by solution-processing methods are composed of vertically oriented thin nanosheets, featuring the rhombohedral symmetry (R3c) and n-type conductivity. The as-prepared AFO photoanodes generate a photocurrent density of +0.78 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) with the photocurrent onset potential (Uonset) close to the flat band potential of 0.5 V vs. RHE in the presence of hole scavengers. Remarkably, the Uonset of AFO for solar water splitting coincides with the flat band potential as well, which is rare in n-type inorganic absorbers. We also report other properties of AFO associated with photoelectrochemical performance. AFO films exhibit a band gap energy of 2.31 eV and positive band edges with low dispersion. Moreover, the carrier lifetimes in AFO films are up to millisecond timescales under the mediation of defect traps. Based on the photoelectrochemical behavior and optoelectronic properties, we believe that AFO has great potential for application in photoelectrochemical cells.
Highly safe and efficient rechargeable lithium batteries have become an indispensable component of the intelligent society powering smart electronics and electric vehicles. This review summarizes the formation principle, chemical compositions, and theoretical models of the solid electrolyte interphase (SEI) on the anode in the lithium battery, involving the functions and influences of the electroactive materials. The discrepancies of the SEI on different kinds of anode materials, as well as the choice and design of the electrolytes are detailedly clarified. Furthermore, the design strategies to obtain a stable and efficient SEI are outlined and discussed. Last but not least, the challenges and perspectives of artificial SEI technology are briefly proposed for the development of high-efficiency batteries in practice.
Solid polymer electrolytes (SPEs) possess comprehensive advantages such as high flexibility, low interfacial resistance with the electrodes, excellent film-forming ability, and low price, however, their applications in solid-state batteries are mainly hindered by the insufficient ionic conductivity especially below the melting temperatures, etc. To improve the ion conduction capability and other properties, a variety of modification strategies have been exploited. In this review article, we scrutinize the structure characteristics and the ion transfer behaviors of the SPEs (and their composites) and then disclose the ion conduction mechanisms. The ion transport involves the ion hopping and the polymer segmental motion, and the improvement in the ionic conductivity is mainly attributed to the increase of the concentration and mobility of the charge carriers and the construction of fast-ion pathways. Furthermore, the recent advances on the modification strategies of the SPEs to enhance the ion conduction from copolymer structure design to lithium salt exploitation, additive engineering, and electrolyte micromorphology adjustion are summarized. This article intends to give a comprehensive, systemic, and profound understanding of the ion conduction and enhancement mechanisms of the SPEs for their viable applications in solid-state batteries with high safety and energy density.
Silicon-based hybrid solar cells (HSCs), especially PEDOT:PSS/Si HSC, have attracted the interest of researchers because they combine the advantages of organic and inorganic materials. A high quality PEDOT:PSS/Si heterojunction is the key to the good performance of PEDOT:PSS/Si HSC. However, as generally requisite to enhance light absorption for HSCs, Si Micro/Nano structures will reduce the interface contact quality between PEDOT:PSS and Si surface. The inferior interface contact quality will limit the separation efficiency of the photogenerated carriers. In this paper, we summarize the research progress in improving the interface contact between Si Micro/Nano structures and PEDOT:PSS film from three aspects: the optimization of Si Micro/Nano structures aimed to improve the fluid properties of PEDOT:PSS solution, the material modification of PEDOT:PSS and interface modification with the purpose to enlarge the heterojunction area and improve the electrical contact, and the specific deposition process of PEDOT:PSS solution developed to achieve the high filling rate of PEDOT:PSS on Si Micro/Nano structures. The insight of this paper is helpful for the preparation of high-quality heterojunction, which is vitally important for the development of high efficiency PEDOT:PSS/Si HSCs.